Как заносить под дифференциал
Перейти к содержимому

Как заносить под дифференциал

  • автор:

Внесение под знак дифференциала

При сведении заданного интеграла к табличному часто используются следующие преобразования дифференциала как операция «подведения под знак дифференциала». При этом используется формула:

\[{f}'\left( x \right)dx=d\left( f\left( x \right) \right)\]

Вообще говоря, внесение (подведение) под знак дифференциала и замена переменной (метод подстановки) – это один и тот же метод нахождения неопределенного интеграла; отличие состоит только в оформлении.

Суть метода

Итак, внесение под знак интеграла опирается на следующее правило интегрирования. Если в произведении функции, стоящей под знаком интеграла, и дифференциала можно увидеть произведение другой функции и дифференциала от нее, то применяем подведение под знак дифференциала, то есть если

\[\begin{cases}   \int{f\left( \phi \left( x \right) \right)\cdot {\phi }'\left( x \right)dx} \\   u=\phi \left( x \right) \\  \end{cases} \right.\Rightarrow \int{f\left( \phi \left( x \right) \right)\cdot {\phi }'\left( x \right)dx}=\int{f\left( u \right)du}\]

При внесении под знак дифференциала необходимо иметь в виду простейшие преобразования дифференциала:

Очень часто метод внесения под знак дифференциала используют для нахождения интегралов вида

Подведение под знак дифференциала

При решении некоторых типов интегралов выполняется преобразование, как говорят внесение под знак дифференциала. Это делается, чтобы получить интеграл табличного вида и легко его взять. Для этого применяется формула: $$ f'(x) dx = d( f(x) ) $$

Хочется отметить такой важный нюанс, над которым задумываются студенты. Чем же отличается этот метод от способа замены переменной (подстановки)? Это то же самое, только в записях выглядит по-разному. И то и другое верно.

Формула

Если в подынтегральной функции прослеживается произведение двух функций, одна из которых является дифференциалом другой, тогда внесите под знак дифференциала нужную функцию. Выглядит это следующим образом:

$$ \int f(\varphi(x)) \varphi'(x) dx = \int f(\varphi(x)) d(\varphi(x))=\int f(u) du $$ $$ u=\varphi(x) $$

Подведение основных функций

Для того, чтобы успешно использовать такой способ решения, необходимо знать таблицы производных и интегрирования. Из них вытекают следующие формулы:

$ dx = d(x+c), c=const $ $ -\sin x dx=d(\cos x) $
$ dx=\frac<1> d(ax) $ $ \cos x dx = d(\sin x) $
$ xdx=\frac<1> <2>d(x^2+a) $ $ \frac = d(\ln x) $
$ -\frac= d(\frac<1>) $ $ \frac <\cos^2 x>= d(tg x) $
$$ \int f(kx+b)dx = \frac<1> \int f(kx+b)d(kx+b) = \frac<1> F(kx+b) + C $$

Примеры решений

В данном примере можно занести под знак дифференциала любую из предложенных функций, хоть синус, хоть косинус. Для того, чтобы не путаться со сменой знаков удобнее занести $ \соs x $. Используя формулы имеем:

$$ \int \sin x \cos xdx = \int \sin x d(\sin x) = \frac<1> <2>\sin^2 x + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

В данном примере нужно внести под знак дифференциала $ x+5 $. Используя формулы внесения получаем:

В таких случаях числитель подынтегральной функции является дифференциалом знаменателя. Убедиться в этом можно взяв производную знаменателя: $ d(x^2+1) = 2x dx $.

После дифференцирования в правой части появляется наш числитель с множителем два. Из формул внесений следует, что от двойки нужно избавиться путем домножения интеграла на $ \frac<1> <2>$. Пробуем:

Так как котангенс интеграл не табличный, то его попробуем решить методом подведения под знак дифференциала. Но прежде, катангенс нужно выразить через отношения косинуса с синусом. Известно, что $ ctg x = \frac<\cos x> <\sin x>$

Получаем интеграл $ \int ctg x dx = \int \frac<\cos x dx> <\sin x>$. Под знак дифференциала перенесем косинус:

В примерах этого типа внесение нужно для квадрата икса, чтобы остался только косинус под интегралом. Для этого нужно понимать, что: $$ x^2 dx = \frac<1> <3>d(x^3) $$ Подставив эту «замену» в исходный интеграл легко найдем ответ для задачи:

$$ \int x^2 \cos x^3dx = \frac<1><3>\int \cos x^3 d(x^3) = \frac<1> <3>\sin x^3 + C $$

$$ \int x^2 \cos x^3 dx = \frac<1> <3>\sin x^3 + C $$

Итак, в статье разобрали как решаются некоторые виды интегралов методом занесения под знак дифференциала. Вспомнили дифференциалы часто распространенных элементарных функций. Если не получается или не хватает времени решить задачи контрольных работ самостоятельно, то мы окажем Вам свою помощь в кратчайшие сроки. Достаточно заполнить форму заказа и мы свяжемся с Вами.

Метод замены переменной в неопределенном интеграле.
Примеры решений

На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.

Технически метод замены переменной в неопределенном интеграле реализуется двумя способами:

– Подведение функции под знак дифференциала;
– Собственно замена переменной.

По сути дела, это одно и то же, но оформление решения выглядит по-разному.

Начнем с более простого случая.

Подведение функции под знак дифференциала

На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:

То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.

Найти неопределенный интеграл. Выполнить проверку.

Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?

Подводим функцию под знак дифференциала:

Раскрывая дифференциал, легко проверить, что:

Фактически и – это запись одного и того же.

Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?

Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.

Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:

Теперь можно пользоваться табличной формулой :

Единственное отличие, у нас не буква «икс», а сложное выражение .

Выполним проверку. Открываем таблицу производных и дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Обратите внимание, что в ходе проверки мы использовали правило дифференцирования сложной функции . По сути дела подведение функции под знак дифференциала и – это два взаимно обратных правила.

Найти неопределенный интеграл. Выполнить проверку.

Анализируем подынтегральную функцию. Здесь у нас дробь, причем в знаменателе линейная функция (с «иксом» в первой степени). Смотрим в таблицу интегралов и находим наиболее похожую вещь: .

Подводим функцию под знак дифференциала:

Те, кому трудно сразу сообразить, на какую дробь нужно домножать, могут быстренько на черновике раскрыть дифференциал: . Ага, получается , значит, чтобы ничего не изменилось, мне надо домножить интеграл на .
Далее используем табличную формулу :

Получена исходная подынтегральная функция, значит, интеграл найден правильно.

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

При определенном опыте решения интегралов, подобные примеры будут казаться лёгкими, и щелкаться как орехи:

В конце данного параграфа хотелось бы еще остановиться на «халявном» случае, когда в линейной функции переменная входит с единичным коэффициентом, например:

Строго говоря, решение должно выглядеть так:

Как видите, подведение функции под знак дифференциала прошло «безболезненно», без всяких домножений. Поэтому на практике таким длинным решением часто пренебрегают и сразу записывают, что . Но будьте готовы при необходимости объяснить преподавателю, как Вы решали! Поскольку интеграла в таблице вообще-то нет.

Метод замены переменной в неопределенном интеграле

Переходим к рассмотрению общего случая – метода замены переменных в неопределенном интеграле.

Найти неопределенный интеграл.

В качестве примера я взял интеграл, который мы рассматривали в самом начале урока. Как мы уже говорили, для решения интеграла нам приглянулась табличная формула , и всё дело хотелось бы свести к ней.

Идея метода замены состоит в том, чтобы сложное выражение (или некоторую функцию) заменить одной буквой.
В данном случае напрашивается:
Вторая по популярности буква для замены – это буква .
В принципе, можно использовать и другие буквы, но мы всё-таки будем придерживаться традиций.

Итак:
Но при замене у нас остаётся ! Наверное, многие догадались, что если осуществляется переход к новой переменной , то в новом интеграле всё должно быть выражено через букву , и дифференциалу там совсем не место.
Следует логичный вывод, что нужно превратить в некоторое выражение, которое зависит только от .

Действие следующее. После того, как мы подобрали замену, в данном примере, , нам нужно найти дифференциал . С дифференциалами, думаю, дружба уже у всех налажена.

После разборок с дифференциалом окончательный результат рекомендую переписать максимально коротко:
Теперь по правилам пропорции выражаем нужный нам :

В итоге:
Таким образом:

А это уже самый что ни на есть табличный интеграл (таблица интегралов, естественно, справедлива и для переменной ).

В заключении осталось провести обратную замену. Вспоминаем, что .

Чистовое оформление рассмотренного примера должно выглядеть примерно так:

Значок не несет никакого математического смысла, он обозначает, что мы прервали решение для промежуточных объяснений.

Также всем рекомендую использовать математический знак вместо фразы «из этого следует это». И коротко, и удобно.

При оформлении примера в тетради надстрочную пометку обратной замены лучше выполнять простым карандашом.

Внимание! В следующих примерах нахождение дифференциала расписываться подробно не будет.

А теперь самое время вспомнить первый способ решения:

В чем разница? Принципиальной разницы нет. Это фактически одно и то же. Но с точки зрения оформления задания метод подведения функции под знак дифференциала – гораздо короче.

Возникает вопрос. Если первый способ короче, то зачем тогда использовать метод замены? Дело в том, что для ряда интегралов не так-то просто «подогнать» функцию под знак дифференциала.

Найти неопределенный интеграл.

Проведем замену: (другую замену здесь трудно придумать)

Как видите, в результате замены исходный интеграл значительно упростился – свёлся к обычной степенной функции. Это и есть цель замены – упростить интеграл.

Ленивые продвинутые люди запросто решат данный интеграл методом подведения функции под знак дифференциала:

Другое дело, что такое решение очевидно далеко не для всех студентов. Кроме того, уже в этом примере использование метода подведения функции под знак дифференциала значительно повышает риск запутаться в решении.

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Ответ в конце урока.

Найти неопределенный интеграл.

Замена:
Осталось выяснить, во что превратится

Хорошо, мы выразили, но что делать с оставшимся в числителе «иксом»?!
Время от времени в ходе решения интегралов встречается следующий трюк: мы выразим из той же замены !

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Ответ в конце урока.

Найти неопределенный интеграл.

Наверняка некоторые обратили внимание, что в моей справочной таблице нет правила замены переменной. Сделано это сознательно. Правило внесло бы путаницу в объяснение и понимание, поскольку в вышерассмотренных примерах оно не фигурирует в явном виде.

Настало время рассказать об основной предпосылке использования метода замены переменной: в подынтегральном выражении должна находиться некоторая функция и её производная : (функции , могут быть и не в произведении)

В этой связи при нахождении интегралов довольно часто приходится заглядывать в таблицу производных.

В рассматриваемом примере замечаем, что степень числителя на единицу меньше степени знаменателя. В таблице производных находим формулу , которая как раз понижает степень на единицу. А, значит, если обозначить за знаменатель, то велики шансы, что числитель превратится во что-нибудь хорошее.

Кстати, здесь не так сложно подвести функцию под знак дифференциала:

Следует отметить, что для дробей вроде, такой фокус уже не пройдет (точнее говоря, применить нужно будет не только прием замены). Интегрировать некоторые дроби можно научиться на уроке Интегрирование некоторых дробей.

Вот еще пара типовых примеров для самостоятельного решения из той же оперы:

Найти неопределенный интеграл.

Найти неопределенный интеграл.

Решения в конце урока.

Найти неопределенный интеграл.

Смотрим в таблицу производных и находим наш арккосинус: . У нас в подынтегральном выражении находится арккосинус и нечто похожее на его производную.

Общее правило:
За обозначаем саму функцию (а не её производную).

В данном случае: . Осталось выяснить, во что превратится оставшаяся часть подынтегрального выражения .

В этом примере нахождение я распишу подробно поскольку – сложная функция.

Или короче:
По правилу пропорции выражаем нужный нам остаток:

Вот здесь подвести функцию под знак дифференциала уже не так-то просто.

Найти неопределенный интеграл.

Пример для самостоятельного решения. Ответ совсем близко.

Внимательные читатели заметили, что я рассмотрел мало примеров с тригонометрическими функциями. И это не случайно, поскольку под интегралы от тригонометрических функций отведён отдельный урок. Более того, на указанном уроке даны некоторые полезные ориентиры для замены переменной, что особенно актуально для чайников, которым не всегда и не сразу понятно, какую именно замену нужно проводить в том или ином интеграле. Также некоторые типы замен можно посмотреть в статье Определенный интеграл. Примеры решений.

Более опытные студенты могут ознакомиться с типовой заменой в интегралах с иррациональными функциями. Замена при интегрировании корней является специфической, и её техника выполнения отличается от той, которую мы рассмотрели на этом уроке.

Решения и ответы:

Пример 3: Решение:

Пример 4: Решение:

Пример 7: Решение:

Пример 9: Решение:

Пример 11: Решение:

Проведем замену:

Пример 12: Решение:

Проведем замену:

Пример 14: Решение:

Проведем замену:

Я выполнил проверку, а Вы? 😉

Автор: Емелин Александр

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *