Почему сначала идет 4s а потом 3d
Перейти к содержимому

Почему сначала идет 4s а потом 3d

  • автор:

Почему сначала идет 4s а потом 3d

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. Check out the browser extension in the Chrome Web Store.

Cloudflare Ray ID: 722031fafe13cbcc • Your IP : 37.120.221.20 • Performance & security by Cloudflare

Как заполняются электронные уровни, подуровни и орбитали по мере усложнения атома.

Если говорить более строго, то относительное расположение подуровней обусловлено не столько их большей или меньшей энергией, сколько требованием минимума полной энергии атома.

Распределение электронов по атомным орбиталям происходит, начиная с орбитали, имеющей наименьшую энергию (принцип минимума энергии), т.е. электрон садится на ближайшую к ядру орбиталь. Это значит, что сначала заполняются электронами те подуровни, для которых сумма значений квантовых чисел (n + l) была минимальной. Так энергия электрона на 4s-подуровне меньше энергии электрона, находящегося на 3d-подуровне. Следовательно, заполнение электронами подуровней происходит в следующем порядке: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d

Исходя из этого требования, минимум энергии достигается у большинства атомов тогда, когда их подуровни заполняются в показанной выше последовательности. Но есть и исключения, которые вы можете найти в таблицах «Электронные конфигурации элементов», однако эти исключения редко приходится принимать во внимание при рассмотрении химических свойств элементов.

Атом хрома имеет электронную конфигурацию не 4s 2 3d 4 , a 4s 1 3d 5 . Это является примером того, как стабилизация состояний с параллельными спинами электронов преобладает над незначительной разницей энергетических состояний подуровней 3d и 4s (правила Гунда), то есть энергетически выгодными состояниями для d-подуровня являются d 5 и d 10 .Энергетические диаграммы валентных подуровней атомов хрома и меди представлены на рис.2.1.1.

Подобный переход одного электрона с s-подуровня на d-подуровень происходит еще у 8 элементов: Cu, Nb, Mo, Ru, Ag, Pt, Au. У атома Pd происходит переход двух s-электронов на d-подуровень: Pd 5s 0 4d 10 .

Рис.2.1.1. Энергетические диаграммы валентных подуровней атомов хрома и меди

Правила заполнения электронных оболочек:

1. Сначала выясняем, сколько всего электронов содержит атом интересующего нас элемента. Для этого достаточно знать заряд его ядра, который, всегда равен порядковому номеру элемента в Периодической таблице Д.И. Менделеева. Порядковый номер (число протонов в ядре) в точности равен и числу электронов во всем атоме.

2. Последовательно заполняем орбитали, начиная с 1s-орбитали, имеющимися электронами, учитывая принцип минимальной энергии. При этом нельзя располагать на каждой орбитали более двух электронов с противоположно направленными спинами (правило Паули).

3. Записываем электронную формулу элемента.

Атом – это сложная, динамически устойчивая микросистема взаимодействующих частиц: протонов р + , нейтронов n 0 и электронов е — .

Рис.2.1.2. Заполнение энергетических уровней электронами элемента фосфора

Электронную структуру атома водорода (z = 1) можно изобразить следующим образом:

+1Н 1s 1 , n = 1 ↑, где квантовая ячейка (атомная орбиталь) обозначается в виде линии или квадрата, а электроны – в виде стрелок.

Каждый атом последующего химического элемента в периодической системе представляет собой многоэлектронный атом.

Атом лития, так же как и атом водорода и гелия, имеет электронную структуру s-элемента, т.к. последний электрон атома лития «садится» на s-подуровень:

+3Li 1s 2 2s 1 2p 0

В атоме бора появляется первый электрон в p-состоянии:

+5В 1s 2 2s 2 2p 1

Запись электронной формулы проще показать на конкретном примере. Допустим, нам надо выяснить электронную формулу элемента с порядковым номером 7. В атоме такого элемента должно быть 7 электронов. Заполним орбитали семью электронами, начиная с нижней 1s-орбитали.

Итак, 2 электрона расположатся на 1s-орбитали, еще 2 электрона — на 2s-орбитали, а оставшиеся 3 электрона смогут разместиться на трех 2p-орбиталях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так:

+7N 1s 2 2s 2 2p 3

Рассмотрим действие правила Гунда на примере атома азота: N 1s 2 2s 2 2p 3 . На 2-м электронном уровне есть три одинаковых p-орбитали: 2px, 2py, 2pz. Электроны заселят их так, что на каждой из этих p-орбиталей окажется по одному электрону. Объясняют это тем, что в соседних ячейках электроны меньше отталкиваются друг от друга, как одноименно заряженные частицы. Полученная нами электронная формула азота несет очень важную информацию: 2-й (внешний) электронный уровень азота заполнен электронами не до конца (на нем 2 + 3 = 5 валентных электронов) и до полного заполнения не хватает трех электронов.

Внешним уровнем атома называется самый далекий от ядра уровень, на котором есть валентные электроны. Именно эта оболочка соприкасается при столкновении с внешними уровнями других атомов в химических реакциях. При взаимодействии с другими атомами азот способен принять 3 дополнительных электрона на свой внешний уровень. При этом атом азота получит завершенный, то есть максимально заполненный внешний электронный уровень, на котором расположатся 8 электронов.

Завершенный уровень энергетически выгоднее незавершенного, поэтому атом азота должен легко реагировать с любым другим атомом, способным предоставить ему 3 дополнительных электрона для завершения его внешнего уровня.

Рис.2.1.3. Заполнение энергетических уровней у s-, p-,d- и f- элементов электронами

Электронная конфигурация атомов и ионов. Основное и возбужденное состояние атомов

Записать распределение электронов по энергетическим уровням можно несколькими способами.

Запись по электронным оболочкам (схема электронного строения)

Показывает заряд ядра и количество электронов на каждом энергетическом уровне.

Запись по электронным оболочкам (схема электронного строения)

Легче всего начинать с неё, потому что она показывает структуру атома «крупным планом».

Запись с обозначением энергетических уровней и подуровней

Каждая орбиталь обозначается квадратной ячейкой. Электрон обозначается стрелкой. Различное направление стрелок указывает на противоположные спины.Под ячейкой подписывают номер энергетического уровня, буквенное обозначение орбитали и количество электронов на ней.

Буквенно-числовое обозначение такого «адреса» электрона – это электронная формула. Электронная конфигурация – это электронная формула, которая показывает распределение электронов по энергетическим уровням.

Электронная конфигурация

Электронная конфигурация

Гелий - электронная конфигурация

Графическая электронная формула

Порядок заполнения орбиталей

Электронная конфигурация атомов 1 и 2 периодов

Электронная конфигурация атомов 1 и 2 периодов.

Электронная конфигурация атомов 3 периода

Строение электронных оболочек атомов элементов третьего периодаСтроение электронных оболочек атомов элементов третьего периода

Электронная конфигурация атомов 4 периода

Заполнение орбиталей атомов 4 периода имеет свои особенности.

На движение электрона влияют поле ядра и поле других электронов. Поэтому в атомах с большим количеством электронов энергия электрона определяется главным и орбитальным квантовыми числами.

Здесь уже надо смотреть на сумму обоих квантовых чисел (n+l). Если для двух подуровней эта сумма равна: 3d, 4p, 5s (n+l=5), то сначала заполняются уровни с меньшими значениями n. То есть последовательность заполнения будет следующей: 3d – 4p – 5s.

Поэтому в 4 периоде сначала заполняется подуровень 4s, а потом подуровень 3d.

Есть ещё одна особенность, которая появляется в 4 периоде. Хром и медь имеют на 4s-орбитали по одному электрону. Всё дело в заполнении d-оболочек. Полузаполненные или заполненные d-оболочки устойчивее частично заполненных. В атоме хрома на каждой из 5 3d-орбиталей есть по одному электрону. В атоме меди на каждой на каждой 3d-орбитали есть по два электрона.

Электронная конфигурация атомов 4 периода

Алгоритм записи электронной конфигурации атома

  1. По порядковому номеру химического элемента в таблице Менделеева определяем количество электронов в атоме.
  2. Распределяем электроны по энергетическим уровням, то есть составляем схему электронного строения.
  3. Выписываем s-, p-, d-подуровни в каждом энергетическом уровне.
  4. Заполняем подуровни электронами: сначала по одному электрону на орбиталь, потом достраиваем электронные пары.

Электронная конфигурация ионов

Электронная конфигурация ионов составляется по тем же принципам. Нужно учитывать изменения количества электронов на внешнем энергетическом уровне.

Атом электронейтрален, то есть сколько протонов ядре, столько же электронов в атоме. Если атом принимает электроны, он становится отрицательно заряженным ионом (анионом), если отдаёт электроны – положительно заряженным ионом (катионом).

Атому легче всего отдать электроны внешнего энергетического уровня, «чужие» электроны он тоже примет на внешний энергетический уровень. На внешнем энергетическом уровне не может находиться более 8 электронов. Теория «октета» была предложена в 1916 году Гилбертом Ньютоном Льюисом и Вальтером Косселем

Атом «стремится» добрать электроны на внешний уровень или избавиться от них, поэтому и становится ионом. Полное заполнение s- и p-подуровней внешнего уровня придаёт атому стабильность. Только атом гелия имеет на единственном внешнем энергетическом уровне 2 электрона, а не 8, потому что первый энергетический уровень состоит только из одной s-орбитали.

Количество электронов на внешнем энергетическом уровне определяется по таблице Менделеева. У элементов главных подгрупп номер группы – это и есть количество электронов на внешнем уровне. У элементов побочных подгрупп количество электронов на внешнем уровне не больше двух.

Запись по электронным оболочкам (схема электронного строения)

Основное и возбуждённое состояния атома

На первый взгляд кажется, что атом хлора может образовывать только одну связь и соединения одного типа – например, хлориды. Но откуда берутся хлорная, хлорноватая, хлористая и хлорноватистая кислоты?

Дело в том, что атом можно перевести из основного состояния в возбуждённое.

Основное состояние – это состояние атома с наименьшей энергией. Атом обладает наименьшей энергией в основном состоянии. Но если ему передать дополнительную энергию, он перейдёт в возбуждённое состояние. Электроны перейдут на уровень или подуровень с большей энергией.

Основное и возбуждённое состояния атома

Сначала разрываются электронные пары на 3p-подуровне, электроны переходят на 3d-подуровень. Если атом хлора получит ещё больше энергии, спаренный электрон покинет даже 3s-орбиталь и перейдёт на 3d-подуровень.

Благодаря этому атом хлора может образовывать больше химических связей. Затраты энергии, потраченные на распаривание электронов, окупаются при образовании новых химических связей.

Но в возбуждённое состояние могут перейти атомы, у которых есть неспаренные электроны и свободные орбитали. Длится возбуждённое состояние недолго: атом отдаст энергию и вернётся в основное состояние. Хотя если сообщить атому слишком много энергии, электрон покинет его и атом станет ионом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *