Аммиак как топливо
Перейти к содержимому

Аммиак как топливо

  • автор:

Зеленый Аммиак — замена водороду?

На этой неделе я решил посмотреть, что происходит в методах хранения и использования водорода. Одна из тем с которой я пересекся это использования аммиака, как метода работы с водородом.

В этой статье поговорим о том, в чем “засмес”, какие есть подводные камни и есть ли какие-то стартапы и компании, которые решают проблему в контексте устойчивого развития.

Что такого с водородом?

Вся история с водородом очень проста: если вы сжигаете водород, то вы получаете в качестве выхлопа воду (2H2 + О2 = 2Н2О) и тепло от сгорания.

Нет выхлопа улгекислого газа и любых других вредных газов.

Выделяется много тепла на единицу массы. Удельная теплота сгорания примерно 140 Мдж на кг (у бензина около 40-45 МДж на кг).

Водород хорошо распространен в природе в форме соединений (в углеводородах и воде, например).

Водород занимает очень большой объем при комнатной температуре и атмосферном давлении, из-за этого на единицу объема у него очень маленькая энергоемоксть. При комнатных условиях в 1 литре водорода всего 0.08 грамм. Для практического применения его надо сжижать (-252 градуса), тогда его плотность увеличивается до примерно 70 грамм на литр. Сравните с 780 граммами на литр для бензина. В итоге бак на 100 литров водорода в криогенном состоянии (под -252 градусами) будет содержать примерно в 3 раза меньше энергии, чем бензиновый.

Криогеника означает усложнение хранения и транспортировке и затраты за сжижение (довольно сложное сжижение до низких температур), а так же контроль за давлением.

Водород является самым маленьким атомом и в газообразном виде имеет тенденцию проникать сквозь любые стенки, он пролезает через другие молекулы. Те водород медленно утекает даже из закрытого баллона через стенки.

Водород горит и образует взрывоопасную смесь с воздухом.

Существует 3 основных промышленных способа производства водорода —

Метановая конверсия паром подразумевает “обработку” метана в парах воды под высокой температурой и давлением. Таким образом получается относительно дешевый водород, одна проблема, на выходе мы имеем СО2. Весь цикл оказывается таковым, что проще было просто сжечь метан, получили бы меньше выхлопов углекислого газа. Сейчас более 75% объемов производства водорода делается таким образом. Большая надежда нефтегазовой отрасли состоит в том, чтобы делать водород именно таким образом и объявлять себя зелеными. Некоторые из нефтяников и газовиков на этом фоне хотят развивать технологии улавливания СО2 из результатов производства водорода и закачивания его обратно в пласт откуда взяли метан. Теоретически мы можем это СО2 там заблокировать на миллионы лет. Но возможно он все равно будет оттуда утекать.

Продувка водяного пара над раскаленным коксом. В целом идея так же, что и конверсией метана. На выходе углекислый газ и водород. В такой цепочке опять же это никакой не зеленый водород.

Электролиз. Это разложение воды на водород и кислород при помощи электричества. Сейчас на этот способ приходится 4% от объема производства водорода. Если электричество было добыто с низким углеродным следом, то и водород такой будет с низким углеродным следом.

Сейчас водород больше используется не как топливо, а как часть промышленной химии. Те пока эра водородной энергетики это какое-то возможное будущее. Но тк давление растет и есть отрасли, где очень трудно заменить ископаемое топливо, то на водород смотрят все больше, как на энергетическое топливо

При чем же тут аммиак

Аммиак это соединение 3 атомов водорода и азота. Особенность в том, что в таком виде водород “плотнее” упакован. Аммиак проще сжижается (при -36 градусах) и имеет более высокую плотность как газ (20 грамм на литр) и особенно как жидкость (680 грамм на литр, почти как бензин). А значит его проще сжижать и проще прокачивать в трубопроводах.

При сжигании аммиака в идеале можно получить только воду и азот. Правда сжигать аммиак довольно не просто, это требует специального механизма смешения с воздухом, присутствия катализаторов и контроля за образованием оксидов азота, которые ядовиты для людей. При этом аммиак выделяет не слишком много темпа на кг (18 Мдж на кг). Тогда в нашем сравнении с бензином аммиак лучше чистого водорода на 25-30%.

Другой вариант это использовать аммиак именно так механизм транспортировки водорода.

Но 80% аммиака на самом деле идет на производство удобрений, так что получение “зеленого” аммика” это и способ снизить углеродоемкость пищевой промышленности.

Промышленный метод производства аммиака сегодня это процесс Хабер-Бош, когда водород смешивают с азотом под высоким давлением и температурой в присутствии катализаторов. Процесс требует поддержания стабильным параметров и поэтому его трудно реализовать в рамках переменной мощности от возобновляемых источников.

Если бы могли найти иной дешевый способ генерации аммиака каким-то образом напрямую из воды и без процесса Хабер-Бош, мы могли бы получать готовый к транспортировке “зеленый” аммиак и затем и водород (через разложение аммиака).

В итоге интерес к аммиаку есть с трех направлений:

Зеленый аммиак для удобрений.

Аммиак как топливо в судах. Именно они сильнее всего рассматривают возможности аммиака и по первым прикидкам это более оптимальное решение, чем батереи или чем чистый водород. Для требуемого объема запаса энергии батареи слишком тяжелые, а чистый водород занимает слишком много места. Аммиак хуже, чем обычном топливо, но во всяком случае баки под него не слишком тяжелые, и занимают разумный объем судна.

Метод транспортировки самого водорода из мест его производства.

Стартапы и новости в области аммиака

Project HEGRA — проект в Норвегии по электрификации процесса производства аммика и полном функционировании на зеленой энергии. Это завод на 400 тыс тонн аммика в год. Довольно крупный проект.

Бизнесы связанные с проектом HEGRA (компания — wartsila) так же исследуют возможности использования аммика в двигателях внутреннего сгорания, а так же использования аммика в топливных ячейках. Пока результаты это общие слова.

Amogy — Ничего конкретного. Даже нечего обсуждать, просто рекламная страничка.

Jupiterionics — Идея базируется на электрохимическом производстве аммиака. Они базируют свою работу на прорыве в области электрохимического прямого производства аммиака. Между двумя электродами помещают смесь водорода, Li3N и специального обменного носителя. Под действием электрического тока, водород скапливается около отрицательного электрода, а Li3N у положительного. Носитель сначала имеет отрицательный заряд и мигрирует к Li3N, там происходит обмен атома водорода в носителе на атом лития. Носитель после этого мигрирует к отрицательному электроду, где производит обратный обмен, литий заменяется на водород. В итоге мы последовательно заменяем весь литий в соединении Li3N на водород и получаем NH3 (аммиак). По заявлению создателей этот процесс происходит гораздо быстрее, чем аналогичные методы электролиза и позволяет избежать процесса Хабер-Бош. Для меня правда вопросы остаются в том, откуда они берут водород в самом начале. В итоге все это базируется на зеленом способе производитель электроэнергию. Но с другой стороны, если будет много дешевой энергии, то и процесс Хабер-Бош можно организовать на зеленой энергии, а стабильность снабжения обеспечить батареями. Стартап получил 2.65 млн австралийских долларов на развитие проекта и идеи в марте 2021 года.

Seaborg Technologies — хотят использовать ядерные реакторы на расплавах солей, размещенные на кораблях для производства водорода и аммиака. Хотя основной фокус просто на баржах с ядерными реакторами, как проект Академик Ломоносов.

Kapsom — фирма занимающаяся строительством химических заводов объявила, что сделала первый завод по зеленому аммиаку в Индии на 1500 тонн аммиака в год в 2020 году. Это конечно гораздо скромнее, чем 400 тыс тонн по проекту HERGA.

Yara — один из крупнейших производителей аммиака (и один из участников проекта HERGA) в апреле 2022 заказали 15 плавающих аммиачных терминала, как основу будущей системы заправки судов аммиаков. Это еще один признак большого изменения в индустрии. В рамках этого проекта Yara планирует сделать аммиак доступным для судов топливом к 2024 году.

Выводы:

Пока аммиак как топливо выглядит как интересная идея, основной потенциал сосредоточен просто в “озеленении” производства обычного аммиака. Именно в этом направлении видны объемные инвестиции и реальный бизнес. Стоит ожидать, что там, где производят водород методом электролиза будет появляться и места производства аммиака.

Нам как инвесторам доступны компании работающие в этой области (wartsila, например есть на бирже), но сами стартапы пока на такой стадии, что обычного инвестору туда не войти.

От всей темы остается ощущение, что может быть много хайпа, но основной объем производства все равно будет связан со старым и скучным электролизом. Хотя на самом деле он не скучный, тк технология эффективного электролиза еще далека от совершенства и реальные затраты энергии значительно выше, чем теоретический минимум необходимый для разделения молекул.

Первый в мире высокотемпературный топливный элемент, работающий на аммиаке, для судоходства

Ежегодно сотни миллионов тонн CO2 выбрасываются морским транспортом, нанося серьезный вред климату. В то время как ученые всего мира испытывают новые двигательные установки, способные заменить мазут на судах, исследователи университета Фраунгофера работают в рамках международного консорциума по разработке топливных элементов на основе аммиака.

Первый в мире высокотемпературный топливный элемент, работающий на аммиаке, для судоходства

При использовании аммиака в качестве топлива для судов с электрическими двигателями, он не уступает по экологичности водороду, но при этом проще и безопаснее в обращении.

Преимущества аммиака как топлива

В настоящее время водород находится в центре внимания в области устойчивой энергетики: существуют планы по использованию водорода в качестве топлива для автобусов, коммерческого транспорта и даже автомобилей. Однако Институт микроинженерии и микросистем IMM им. Фраунгофера в Майнце работает над еще одной перспективной возможностью. В рамках проекта ShipFC Институт Фраунгофера сотрудничает с 13 европейскими партнерами по консорциуму с целью разработки первого в мире топливного элемента на основе аммиака для судоходства. Исследователи Фраунгофера отвечают за разработку каталитического нейтрализатора, предотвращающего образование выбросов, которые могли бы нанести вред климату.

Морской транспорт является основным источником выбросов парниковых газов. Согласно информации, предоставленной Немецким агентством по охране окружающей среды (UBA), в настоящее время на долю морского транспорта в мировом океане приходится около 2,6 % выбросов CO2. В 2015 году было выброшено около 932 миллионов тонн CO2, и эта цифра увеличивается с каждым годом. Очевидно, что необходимы срочные контрмеры.

Первый в мире высокотемпературный топливный элемент, работающий на аммиаке, для судоходства

Проект ShipFC призван доказать, что новая безэмиссионная двигательная технология работает безопасно, надежно и бесперебойно даже на больших судах и в длительных плаваниях. Проект координируется норвежской организацией NCE Maritime Cleantech, целью которой является разработка экологически чистых технологий в морском секторе.

Аммиак известен, прежде всего, как удобрение в сельском хозяйстве. Однако он может также функционировать в качестве высококачественного энергоносителя. Профессор Гюнтер Кольб (Gunther Kolb), директор энергетического подразделения и заместитель директора института IMM, объясняет: «Аммиак имеет значительные преимущества перед водородом. Водород должен храниться при температуре -253 градуса Цельсия в жидком виде или при давлении около 700 бар в виде газа. Жидкий аммиак можно хранить при разумной температуре -33 градуса Цельсия при стандартном давлении и +20 градусов при 9 бар. Это значительно облегчает и упрощает хранение и транспортировку данного энергоносителя».

Процесс производства электроэнергии из аммиака функционирует аналогично электростанциям на основе водорода. Сначала аммиак (NH3) подается в реактор деления, где он разделяется на азот (N2) и водород (H2). 75 % газа состоит из водорода. Небольшое количество аммиака (NH3, 100 ppm) не преобразуется и остается в газовом потоке.

Во-вторых, азот и водород подаются в топливный элемент, в него вводится воздух, что позволяет водороду гореть и образовывать воду. При этом вырабатывается электрическая энергия. Однако водород не полностью преобразуется в топливном элементе. Около 12 % водорода и некоторое количество остаточного аммиака оставляют топливный элемент несгоревшим. Этот остаток затем подается в катализатор, разработанный компанией Fraunhofer IMM. Здесь поступает воздух, и остаток контактирует с гофрированной металлической фольгой, покрытой порошковым слоем каталитических частиц, содержащих платину. Это вызывает химическую реакцию. В конечном итоге, единственными конечными продуктами являются вода и азот. Оптимальный процесс реакции не приведет даже к образованию экологически вредных оксидов азота.

Группа исследователей IMM также разрабатывает реактор, содержащий катализатор, который работает пассивно. Реактор контролирует температуру и поток газа. Например, он подогревает катализатор еще до того, как двигатели запустятся, так как он менее эффективен в холодное время года. «Температура газов, проходящих через каталитический нейтрализатор, должна быть, вероятно, около 500 градусов Цельсия, чтобы процесс очистки отработанных газов был как можно более эффективным», — объясняет Кольб.

Исследователи IMM из Фраунгофера имеют многолетний опыт разработки реакторов, в том числе катализаторов для самых разных областей применения в сфере транспорта и мобильности. Институт в Майнце располагает девятью испытательными установками, но очистка отработанного газа от аммиачных топливных элементов мощностью 2 мегаватт до сих пор является технологической проблемой. «Мы должны развивать нашу существующую технологию работы на аммиачных топливных элементах дальше, и каталитический нейтрализатор для судна, очевидно, намного больше, чем обычный двигатель», — говорит Кольб.

Команда IMM планирует закончить работу над первоначальным, небольшим прототипом к концу 2021 года, за которым последует прототип фактического размера к концу 2022 года.

Во второй половине 2023 года первый корабль с топливным элементом, работающим на аммиаке, выйдет в море — » Энергия викингов», судно снабжения, принадлежащее норвежской судоходной компании » Eidesvik «. После этого другие типы судов, например, грузовые суда, будут оборудованы топливными элементами, работающими на аммиаке.

Аммиак поставляется компанией YARA, партнером в консорциуме ShipFC. В настоящее время химическая компания производит треть аммиака, используемого во всем мире. В проекте ShipFC используется «зеленый» аммиак, то есть аммиак, получаемый из возобновляемых источников энергии.

ShipFC открывает большие возможности для ранее недооцененного энергоносителя. Исследователь IMM Гюнтер Колб (Gunther Kolb) подробно останавливается на этом: «Мы рассматриваем аммиак не как непосредственного конкурента водорода, а как дополнительную опцию в области устойчивой энергетики. С его преимуществами в области хранения, эта экологически чистая технология производства электроэнергии, безусловно, играет свою роль». Использование ее на судах — это только начало».

Потенциал аммиака был также признан на политическом уровне: Европейский Союз выделил 10 миллионов евро на финансовую поддержку проекта ShipFC.опубликовано econet.ru по материалам techxplore.com/

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Удобрение меняет профессию

Химическое соединение, молекула которого состоит из одного атома азота и трех атомов водорода, называемое аммиаком (NH3), — вероятно, одно из самых известных веществ на Земле. Кто не знает про нашатырный спирт (водный аммиак) или азотные удобрения? Но мало кто осознаёт, что это ещё и источник энергии, пригодный для использования, в частности, в двигателях внутреннего сгорания. При этом требуемая доработка двигателя оказывается немногим сложнее и дороже, чем при переводе бензинового мотора на газовое топливо. Хотя по энергоёмкости единицы объёма жидкий безводный аммиак примерно вдвое уступает бензину и дизельному топливу, у него есть два неоспоримых преимущества: его можно добывать в буквальном смысле из воздуха и при его сгорании не образуется никаких токсичных соединений углерода, серы и т. п. — только азот и вода.

Энергоноситель

Использовать аммиак в качестве моторного топлива пробовали ещё 70 лет назад. Из-за острого дефицита дизельного топлива правительство Бельгии было вынуждено в 1943 г. выпустить на маршруты рейсовые автобусы, работающие на аммиаке и угольном газе. До окончания войны они успели пробежать десятки тысяч километров.

Еще одна замечательная особенность аммиака — высокое процентное содержание водорода. Как это ни парадоксально звучит, хранить и транспортировать водород в виде жидкого аммиака значительно удобнее и дешевле, чем в сжатом или сжиженном состоянии. В литре жидкого безводного аммиака содержится больше водородных атомов, чем даже в литре жидкого водорода. 37 МВт·ч энергии, которые можно высвободить при сжигании тонны водорода, «упаковываются» в 6,5 т аммиака, для хранения которых под давлением около 10 атм (давление перехода аммиака в жидкое состояние при комнатной температуре) потребуется резервуар из углеродистой стали еёмкостью 10 тыс. литров. Стоимость подобного резервуара в несколько раз меньше, чем баллонов высокого давления (свыше 200 атм), необходимых для хранения тонны сжатого водорода. Напомним, что водород требует применения специальных легированных сталей (чтобы оболочка баллона не теряла пластичности).

Другой вариант — хранение аммиака в огромных (30 тыс. м 3 ) рефрижераторных ёмкостях, охлаждаемых до температуры -33 °С, при которой он переходит в жидкое состояние под атмосферным давлением. Нетрудно заметить, она намного выше, чем -253 °С, необходимые для ожижения водорода, и, следовательно, достижима гораздо более простыми и дешёвыми средствами. Интересно, что в качестве хладагента для холодильной установки может применяться сам аммиак. Немаловажно также, что вся технология и инфраструктура производства и транспортировки аммиака как сырья для изготовления азотных удобрений давно и досконально отработаны.

Накопитель энергии

Мы уже не раз писали о том, что одна из главных задач, возникающих при организации энергоснабжения с помощью возобновляемых источников энергии (ВИЭ), — обеспечить его постоянство и бесперебойность. Все мы знаем, что солнце светит только днём и даёт хороший поток энергии только в безоблачную погоду, что ветер очень непостоянен, водообеспеченность рек зависит от осадков и т. д. Один из способов решения этой задачи — использовать энергию ВИЭ для производства топлива, с помощью которого в дальнейшем можно будет вырабатывать электроэнергию в то время, когда ВИЭ «пасуют». И аммиак — один из серьёзных претендентов на роль такого топлива.

Чтобы рассеять опасения насчёт того, что аммиак относится к классу опасных веществ (действительно, вдыхая его в больших количествах, можно в некоторых случаях получить паралич дыхания), назовём два обстоятельства. Во-первых, минимальную утечку аммиака, который имеет резкий запах, заметит даже самый нечувствительный к запахам человек. Во-вторых, аммиак почти вдвое легче воздуха, поэтому он быстро поднимается вверх, не оставляя, в отличие от других вредных газов, ядовитого облака вблизи земной поверхности.

Старый подход

Традиционно аммиак из воздуха и воды получают с применением сначала электролиза воды для получения водорода, затем — безотходного процесса Габера-Боша, когда смесь азота и водорода пропускают через нагретый катализатор под давлением около 1000 атм. При этом за счёт высокого давления равновесие в реакции N2+3H2 ↔ 2NH3 смещается вправо. Реакция образования аммиака из водорода и азота равновесная и экзотермическая (с выделением теплоты). При высоких температурах, необходимых для достижения приемлемой скорости реакции, равновесие смещается в сторону азота и водорода, из-за чего выход аммиака за один проход катализатора в промышленных условиях не превышает 14-16%. Поэтому образовавшуюся смесь охлаждают до температуры конденсации аммиака, жидкий аммиак отделяют сепаратором, а оставшуюся смесь водорода и азота направляют на рециркуляцию — вновь нагревают и пропускают через катализатор. Благодаря рециркуляции в процессе Габера-Боша теоретический выход аммиака составляет 100%. Несмотря на то, что реакция синтеза аммиака экзотермическая, процесс получается очень энергоёмким: средний расход электроэнергии на производство 1 т аммиака (без учёта электролиза) достигает 3200 кВт·ч. Энергия затрачивается на сжатие и нагрев смеси азота и водорода, а также частично рассеивается при охлаждении, необходимом для конденсации и отделения аммиака.

Новый стиль

Другой, более перспективный и экономически эффективный способ получения аммиака — так называемый твёрдотельный синтез, SSAS (Solid State Ammonia Synthesis), из водяного пара и воздуха. Здесь используется вариант обратимого твёрдооксидного топливного элемента (см. «Энерговектор» № 3/2014, с. 13) на основе трубок из протонопроводящей керамики. На одной и той же установке можно получать как аммиак из воздуха и воды с помощью электричества, так и электричество из аммиака. Проект пилотной установки такого рода разработан американской компанией Alaska Applied Sciences. Реализация проекта, по мнению авторов, позволит доказать более высокую эффективность твёрдотельного синтеза по сравнению с процессом Габера-Боша. Предполагается, что комплексная установка целиком разместится в одном перевозимом контейнере и сможет в зависимости от текущего состояния ВИЭ-генераторов либо синтезировать (на избытках вырабатываемой ими энергии) аммиак, накапливая его в резервуарах, либо генерировать из накопленного топлива недостающую энергию, подавая её в местную энергосеть. Полностью автономная необслуживаемая установка будет оснащена средствами сбора данных, системами SCADA и диспетчерского управления, чтобы обеспечить дистанционный мониторинг состояния оборудования и управление им из диспетчерского центра.

На все руки

На Аляске нет целостной энергосистемы, соединённой с Единой энергосистемой США и Канады (аналогичная картина наблюдается во многих отдалённых российских регионах). Многочисленные «островные» энергосети (причём не только на реальных океанских островах, но и на материке) часто не справляются с бесперебойной круглогодичной подачей потребителям необходимого количества электроэнергии. Кроме нескольких гидроэлектростанций, угольных ТЭС, солнечных и ветровых станций, электроэнергию для заполярного штата вырабатывают дизель-генераторы, а стоимость «северного завоза» дизельного топлива хорошо известна. Поэтому цена киловатт-часа на Аляске нередко зашкаливает за доллар, из-за чего многие местные жители вынуждены сводить потребление электроэнергии к минимуму.

Идея авторов проекта — с помощью энергии солнца и ветра снизить стоимость производства электроэнергии и по возможности обеспечить регулярную и бесперебойную её подачу, сведя при этом к минимуму вредные выбросы во внешнюю среду. Дополнительное преимущество такого подхода — возможность использования «чистого» аммиачного топлива не только для генерации электричества, но и для других целей, например, заправки доработанных лодочных моторов и привода различных механизмов. Во время испытаний в Калифорнии экспериментальный мотор более 1000 часов приводил в движение ирригационный насос, работая на смеси, состоящей из 75% аммиака и 25% пропана. Мощность этого шестицилиндрового мотора — около 100 л. с., КПД — порядка 50%.

Ещё одна интересная идея авторов проекта — размещать на морских и речных баржах крупные рефрижераторные аммиачные резервуары атмосферного давления, к которым будут подключены установки SSAS. Благодаря этому значительно упростится и удешевится доставка топлива в те районы, где оно в данный момент нужнее всего.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *