Система изменения геометрии впускного коллектора
К сожаления, соответствующий мануал от своего AFT не нашел, поэтому привожу схему от более нового AEH 1,6. Коротко, но понятно для чего система вообще нужна и как она работает:
Статья для общего понимания, что такое мощность и крутящий момент и как они связаны:
auto.mail.ru/article/5340…yashchii_moment_chto_eto/
Во впускном коллекторе есть заслонки, которые рулят потоком воздуха. В открытом положении — по короткому пути, в закрытом — по длинному пути. Закрытием/открытием заслонок механически управляет вакуумный клапан. Вакуум на клапан подается из впускного коллектора через электроклапан.
Электроклапан либо пропускает вакуум — мембрана на вакуумном клапане втягивается, преодолевая сопротивление пружины, тянет за собой шток, заслонки закрываются, воздух идет по длинному пути.
Либо пропускает атмосферный воздух — пружина в клапане выталкивает шток, заслонки открываются
Перво-наперво проверил вакуумный клапан (037 129 061 A) — вдавил шток и заткнул входное отверстие. Шток тут же выдвинулся — шляпа, не держит вакуум.
Потом через VAG COM проверил электроклапан (037 906 283 A), контроллер (Двигатель) > Тест исполнителей — 03.
Все гут, щелкает исправно. Хоть что-то исправно.
Клапан неразборный, но удалось его раздербанить, не порвав окончательно мембрану.
Так и есть, дырка около 1 см.
Заклеил куском от обычной перчатки с двух сторон резиновым клеем.
Склеил корпус тоже резиновым клеем, сверху залил герметиком. Если что, можно будет еще раз разобрать.
Проверил клапан, подав вакуум сразу от коллектора, минуя электроклапан — шток сразу же задвинулся, ваккуум держит.
Подключил все как положено. Завожу — шток неподвижен. Плавно газую — не двигается.
Если резко начинаю давить газульку — шток бодро задвигается и почти сразу плавно выдвигается.
Проверил мультиметром — так и есть, напряжение на электроклапане появляется только во время "газа".
То есть система срабатывает только на короткое время в переходных режимах.
Проверил все ваккумные трубки, временно подключив силиконовые трубки:
Поведение не изменилось.
Судя же по мануалу на AEH, при холостых оборотах и вплоть до определенных оборотов (3-4 т.об/мин), чтобы обеспечить максимальный момент, воздух должен идти по длинному пути, то есть как только двигатель завелся, шток сразу должен задвинуться. Т.е электроклапан должен закрыть пропуск атомосферного воздуха и пропустить вакуум из впускного коллектора. Заслонки при этом перекрывают короткий путь
На высоких оборотах шток должен выдвинуться, заслонки открыться, чтобы воздух шел по короткому пути:
Меня в этой схеме смущает, что на холостых и в городском режиме (до 3-4 тыс.об/мин) вакуумный клапан постоянно находится "в сжатом состоянии", оттого представляется, что ресурс его должен быть недолог. Логичнее, чтобы он срабатывал только когда нужен режим наибольшей мощности.
Хотя может быть разработчики закладывали, что в случае неисправности вакуумного клапана пусть лучше останется режим максимальной мощности, режим чем максимального момента.
С другой стороны, многие так и советуют проверять — если клапан срабатывает при резком газе, значит система работает.
Не до конца понял, как система работает, но будет надеяться, что это штатный вариант.
Тема: ADR Клапан системы изменения геометрии впускного коллектора-N156: обрыв цепи (фото)
ADR Клапан системы изменения геометрии впускного коллектора-N156: обрыв цепи (фото)
После проверки компьютером выявили следующие несиправности:
Версия VAG-COM: Релиз 311.2-N
Номер Контроллера: 8D0 907 558 B
Компонент и/или версия: 1,8L R4/5V MOTR HS D03
Кодирование: 04001
Код Сервиса: WSC 05314
2 Найдены неисправности:
17924 — Клапан системы изменения геометрии впускного коллектора-N156: обрыв цепи
P1516 — 35-10 — — — Спорадическая
16496 — Датчик температуры воздуха на впуске-G42: слишком низкий уровень сигнала
P0112 — 35-00 — —
Перерыл весь интернет, но не совсем всё понимаю в этой проблеме.
Вот картинки данного узла:
Колхоз поломанного кронштейна (вроде так называется, может кому пригодится. )
А это общий вид узла, "флейта" внутри, но к ней лезть пока не особо хочется)
Так вот я не понимаю где непосредственно находится этот клапан. Предполагаю, что это часть, которая находится правее со штэкером? А мембрана, которая рвётся находится слева в так называемом "грибке" под крышкой?
Скажите пожалуйста, уважаемые, как проверить штуку, которая справа со штэкером и как вскрыть крышку "грибка", чтобы проверить целостнойсть мембраны, если это необходимо конечно.
Особенности работы впускного коллектора с изменяемой геометрией
Часто впускной коллектор содержит дроссельную заслонку (клапан) и некоторые другие детали. Впускной коллектор состоит из ресивера (приточной камеры) и впускных труб (раннеров). В некоторых двигателях V6 и V8 впускной коллектор может быть выполнен из нескольких отдельных секций или частей.
Впускной воздух проходит через воздушный фильтр, впускной патрубок, затем через корпус дроссельной заслонки в камеру нагнетания — ресивер, затем через впускные трубы (раннеры) — в цилиндры.
Дроссельный клапан (заслонка) контролирует обороты двигателя, регулируя количество воздушного потока. В современных автомобилях обороты холостого хода также регулируются корпусом дроссельной заслонки — на холостом ходу заслонка открывается под очень небольшим углом.
Поскольку корпус дроссельной заслонки практически закрыт, когда двигатель работает на холостом ходу, во впускном коллекторе появляется вакуум. Если где-то в коллекторе будет утечка вакуума, двигатель будет работать неровно на холостом ходу. Многие проблемы впускного коллектора связаны с утечками вакуума.
Что такое впускной коллектор и для чего он нужен?
На чём бы ни работал двигатель – бензине, дизеле, газе – ему нужен воздух, много чистого, прохладного, «вкусного» воздуха. Для его правильной подачи и используется впускной коллектор.
По сути, это трубопровод определенной формы и размера, который нужен для доставки в цилиндры нужного количества воздуха. Помимо этого, он отвечает за смешивание воздуха с топливом из форсунок в инжекторном двигателе. Но если бы всё было так просто, инженеры не занимались бы поиском идеальной геометрии коллектора для каждого нового мотора.
В современных автомобилях впускной коллектор выполняет несколько задач:
- Подает нужное количество воздуха для приготовления стехиометрической топливной смеси (то есть с оптимальным соотношением топлива с воздухом);
- Равномерно распределяет воздушный поток между цилиндрами двигателя;
- Так как в коллекторе есть постоянное разрежение, за счет всасывающего эффекта от поршней двигателя, то инженеры додумались использовать это разрежение (вакуум) для усиления тормозных усилий, для вентиляции картерных газов и т.д., в зависимости от марки и типа автомобиля.
- Создает резонансный воздушный поток, чтобы увеличить скорость его движения без дополнительного оборудования.
Впускной коллектор с изменяемой геометрией
Рабочие характеристики двигателя можно регулировать, изменяя размер ресивера и длину или размер отверстия впускных труб.
По этой причине современные автомобили имеют регулируемые впускные коллекторы, где специальные регулирующие клапаны изменяют воздушный поток через коллектор в зависимости от частоты вращения двигателя и требуемой мощности.
Для чего создавалась система изменения геометрии впускного коллектора?
Главным предназначением внедрения этой системы является создать необходимые условия для работы двигателя при различных режимах. Собственно, эту же цель преследовала и система изменения фаз газораспределения, о чем мы говорили ранее. В результате применения подобной схемы, удалось добиться экономии топлива, изменить соотношения крутящего момента и оборотов на различных диапазонах работы двигателя. Наконец, далеко не последнюю роль играют и нормы экологической безопасности, которые предъявляются к автомобилям и становятся все жестче.
Применяется такая система, как на бензиновых, так и на дизельных моторах, правда, с небольшими конструктивными изменениями.
Как видим, технологии далеко шагнули вперед и если сравнивать современный автомобиль с тем, который был произведен всего 10 лет назад, то разница будет весьма ощутимой по всем параметрам: экологичности, мощности, экономии топлива. Применение таких систем позволяет добиться высокой мощности от двигателей, которые обладают малым объемом.
Неисправности впускного коллектора
Общие проблемы с впускным коллектором включают в себя:
- подсос воздуха;
- утечки охлаждающей жидкости или масла;
- снижение потока из-за накопления углерода;
- проблемы с впускными регулирующими заслонками.
В некоторых двигателях впускной коллектор может корродировать или растрескиваться, вызывая утечку вакуума или охлаждающей жидкости. Треснувший коллектор должен быть заменен, если его нельзя безопасно отремонтировать.
Утечки охлаждающей жидкости
В некоторых автомобилях во впускном коллекторе имеются каналы для охлаждающей жидкости, которые могут протекать из-за плохих прокладок или повреждений. Например, эта проблема была довольно распространенной в старых двигателях GM V6.
Если коллектор не поврежден и сопрягаемые поверхности находятся в хорошем состоянии, для решения проблемы обычно достаточно замены прокладок или повторного уплотнения коллектора. Если коллектор поврежден — его необходимо заменить.
Подсос воздуха
Изношенные прокладки впускного коллектора (на фото) часто вызывают утечки вакуума. Это может привести к неровному холостому ходу, остановке, а также к включению индикатора Check Engine. При этом на более высоких оборотах двигатель может работать нормально.
Например, коды неисправностей OBD-II P0171 и P0174 часто вызваны утечками во впускном коллекторе. Если подсос вызван плохими прокладками, ремонт включает снятие впускного коллектора, проверку и очистку монтажных поверхностей и замену прокладок. Посмотрите, например, это видео замене прокладок впускного коллектора на Рено Меган:
Часто источником подсоса воздуха может быть треснувший вакуумный шланг или патрубок, соединяющий впускной коллектор. В этом случае сломанный вакуумный шланг или патрубок необходимо заменить.
Иногда впускной коллектор может деформироваться, вызывая неправильное уплотнение прокладок. Деформированный впускной коллектор необходимо заменить. В некоторых автомобилях утечку вакуума можно определить по шипящему звуку из-под капота.
Читайте подробнее: Как найти подсос воздуха в домашних условиях.
Отложения углерода
В некоторых двигателях, например, Volkswagen TDI Diesel, отложения углерода внутри впускного коллектора могут вызвать недостаток мощности, пропуски зажигания, дым и увеличение расхода топлива.
Проблемы с отложением углерода чаще встречаются в двигателях с турбонаддувом. Одним из основных симптомов является отсутствие тяги. Забитый впускной коллектор может потребоваться снять и почистить вручную.
В некоторых случаях замена впускного коллектора может оказаться более разумным решением, чем его очистка. Есть много скрытых областей внутри коллектора, которые не могут быть очищены.
Проблемы с заслонками изменения геометрии впуска
Регулирующие заслонки обычно приводятся в действие электрическими или вакуумными исполнительными механизмами. Часто резиновая диафрагма внутри вакуумного привода начинает протекать, и привод перестает работать.
Вакуумный исполнительный механизм легко проверить с помощью ручного вакуумного насоса. Если вакуумный привод пропускает, его необходимо заменить. Вместо насоса можно использовать медицинский шприц.
Блок управления двигателя (ЭБУ) запускает вакуумные приводы, включая и выключая небольшие электромагнитные клапаны контроля вакуума. Эти соленоиды также часто выходят из строя. Соленоиды тоже легко проверить с помощью ручного вакуумного насоса.
Другой распространенной проблемой является случай, когда клапан изменения геометрии впуска залипает из-за накопления углерода или когда клапан деформирован. В этом случае коллектор необходимо заменить.
Например, проблемы с впускным коллектором (регулирующим клапаном) часто встречаются в некоторых двигателях VW / Audi. Volkswagen продлил гарантию на впускной коллектор для определенных автомобилей Audi / Volkswagen 2008-2011 модельного года с двигателями 2.0 TFSI с кодами двигателей CBFA и CCTA.
Во многих автомобилях BMW неисправный клапан DISA, установленный во впускном коллекторе, также является общей проблемой. Посмотрите это видео о проверке клапана DISA в BMW:
Виды систем
Способы реализации технологии изменения геометрии впускного коллектора:
- регулировка длины впускного коллектора;
- регулировка поперечного сечения каналов впускного коллектора.
На некоторых моторах применяется симбиоз из двух видов систем. И в первом, и во втором случае регулировка осуществляется специальными заслонками. Разумеется, для достижения максимального эффекта длина и сечение впускных каналов должны были бы изменяться пропорционально увеличению оборотов двигателя, но данная технология слишком дорога для массового производства и используется только на автомобилях премиум-класса.
Переменная длина впуска
Названия системы, использующиеся некоторыми автопроизводителями:
- Форд —Dual-Stage Intake (DSI);
- БМВ – Differential Variable Air Intake (DIVA);
- Мазда –Variable Inertia Charging System (VICS), Variable Resonance Induction System, (VRIS).
Принцип работы системы достаточно прост. На низких оборотах заслонка большого канала закрыта, поэтому воздух поступает по длинному и более узкому пути. При повышении оборотов выше расчетной границы (обычно это 4000-4300 тыс. об/мин.) заслонка открывается, освобождая более короткий путь воздуху к цилиндру. Регулировка положения заслонки может осуществляться сервоприводом, управление которым лежит на плечах ЭБУ, либо с помощью вакуума. Вакуумный привод предполагает наличие вакуумного клапана, соединенного со впускным коллектором. При повышении оборотов разряжение на впуске увеличивается, что провоцирует втягивание мембраны и перемещение тяги заслонок.
Изменение поперечного сечения
- Форд –Intake Manifold Runner Control (IMRC), Charge Motion Control Valve (CMCV).
- Опель – Twin Port.
- Тойота – Variable Intake System (VIS).
- Вольво – Variable Induction System (VIS).
На рисунке представлено устройство системы Twin Port. Установленная во впускном коллекторе вихревая заслонка открывается только на высоких оборотах, увеличивая тем самым проходное сечение каналов. На рисунке слева вы можете увидеть, что когда заслонка закрыта, воздух поступает по одному из каналов, из-за чего в цилиндре создается большая турбулентность и топливо лучше перемешивается с воздухом. Также система изменения геометрии впускного коллектора на низких оборотах позволяет более эффективно задействовать систему рециркуляции отработавших газов. Как и в случае с изменением длины впуска, управляются заслонки вакуумом либо сервоприводом.
Замена впускного коллектора
Если впускной коллектор не может быть очищен или отремонтирован, его необходимо заменить. Впускной коллектор также меняется, если один из неисправных регулирующих клапанов не может быть заменен отдельно. В некоторых автомобилях это довольно просто, в других это требует больше труда.
При замене впускного коллектора важно очистить монтажную поверхность, заменить прокладки и затянуть болты коллектора в рекомендованном порядке в соответствии со спецификациями. Это особенно важно для двигателей V6 / V8.
Предыдущая запись Катушка зажигания — виды, как работает, неисправности, как проверить
Следующая запись Предохранители — для чего нужны, как проверить, как заменить
Форма и объемная эффективность
Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.
В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.
В момент, когда происходит всасывание, воздух проходит на весьма высокой скорости через открытый впускной клапан. Когда клапан закрывается, воздух, не успевший попасть в цилиндр, сохраняет большой импульс, а значит давит на клапан, в результате чего образуется зона высокого давления. Затем происходит выравнивание давления, с более низким давлением в коллекторе. Из-за влияния сил инерции, выравнивание происходит с колебаниями: вначале воздух попадает в раннер под давлением более низким, чем в коллекторе, затем под более высоким. Происходит сей процесс со скоростью звука, и до того, как впускной клапан откроется в очередной раз, колебания могут совершаться многократно.
Изменение давления вследствие резонансных колебаний воздуха тем больше, чем меньше диаметр раннера. Когда поршень движется вниз, давление на выходе раннера уменьшается. Затем этот низкий импульс давления доходит до входа коллектора, где превращается в импульс высокого давления, который проходит в обратном направлении через раннер и клапан, после чего клапан закрывается.
Для достижения максимального эффекта от резонанса, впускной клапан должен открываться в строго определенный момент, иначе результат будет обратный. Добиться этого довольно сложно. Газораспределительный механизм является динамическим узлом, и режим его работы находится в самой прямой зависимости от частоты вращения коленвала. Импульсы синхронизируются статично, синхронизация зависит от длины раннеров. Частично проблема решается тем, что длина подбирается под определенный диапазон оборотов, на которых достигается наибольший крутящий момент. Другой вариант — применение систем изменения геометрии впускного коллектора и электронного управления ГРМ.
Как коллектор влияет на работу двигателя
Когда мотор работает на максимальных оборотах при полностью нажатой педали газа, то скорость воздуха в коллекторе приближается (а в спортивных автомобилях заметно превышает) скорость звука. На таких скоростях любой поворот и самый незначительный бугорок оказываются серьезным препятствием, которое многократно увеличивает сопротивление коллектора воздушному потоку. В результате в цилиндры поступает меньше воздуха, поэтому мощность мотора падает. В таком режиме карбюратор нередко выдает переобедненную смесь, скорость горения которой в десятки раз быстрей, чем нормальной. Поэтому топливовоздушная смесь взрывается, это приводит к повреждению клапанов, поршней и других элементов мотора.
Не менее важно и качественное соединение коллектора с карбюратором или воздушным фильтром. Если уплотнительные элементы изношены или плохо затянуты гайки крепления, то в месте контакта происходит подсос воздуха, в результате – переобеднение смеси и взрывы в камере сгорания.