Технические характеристики моторных масел
Моторные масла работают в ОЧЕНЬ тяжелых условиях (другим смазочным материалам, применяемым в автомобилях — несравненно легче выполнять свои функции, не теряя нужных свойств, так как они работают в среде относительно однородной, с более-менее постоянными температурой, давлением и нагрузками). У моторных же режим рваный — одна и та же порция масла длительное время подвергается ежесекундным перепадам тепловых и механических нагрузок, поскольку условия смазки различных узлов двигателя далеко не одинаковы. Кроме того, моторное масло подвергается химическому воздействию — кислорода воздуха, других газов, продуктов неполного сгорания топлива, да и самого топлива, которое неминуемо попадает в масло, хотя и в очень малых количествах.
В таких, тяжелых условиях моторное масло должно в течение длительного времени выполнять свои функции:
- уменьшать трение между соприкасающимися поверхностями, снижая износ и предотвращая задиры;
- уплотнять зазоры, в первую очередь, между деталями цилиндро-поршневой группы, не допуская или сводя к минимуму прорыв газов из камеры сгорания;
- защищать детали от окисления (коррозии);
- отводить тепло от трущихся поверхностей;
- выносить продукты износа из зоны трения (моющие свойства), тем самым замедляя образование отложений на поверхности частей двигателя.
Основные характеристики масел
Вязкость
Индекс вязкости
Температура вспышки.
Этот показатель характеризует наличие в масле легкокипящих фракций, и, соответственно, связан с испаряемостью масла в процессе эксплуатации. У хороших масел температура вспышки должна быть выше 225 С. У недостаточно качественных масел маловязкие фракции быстро испаряются и выгорают, ведя к высокому расходу масла и ухудшению его низкотемпературных свойств.
Температура застывания
Это температура, при которой масло практически полностью теряет текучесть (подвижность). Температура застывания характеризует момент резкого увеличения вязкости при снижении температуры, или кристаллизации парафина вместе с повышением вязкости в такой степени, что масло становится твердым.
Щелочное число (TBN).
Показывает общую щелочность масла, включая вносимую моющими и диспергирующими присадками, которые обладают щелочными свойствами. TBN характеризует способность масла нейтрализовывать вредные кислоты, поступающие в него в процессе работы двигателя и противодействовать отложениям. Чем ниже TBN, тем меньше активных присадок осталось в масле. TBN большинства масел для бензиновых двигателей обычно имеет значения в пределах 8-9 единиц, а для дизельных двигателей около 11-14. При работе моторного масла общее щелочное число неизбежно снижается, нейтрализующие присадки срабатываются. Значительное падение числа TBN приводит к кислотной коррозии, а также загрязнению внутренних частей двигателя.
Кислотное число (TAN).
Кислотное число является показателем, характеризующим наличие в моторных маслах продуктов окисления. Чем меньше его абсолютное значение, тем лучше условия работы масла в двигателе и тем больше его остаточный ресурс. Повышение числа TAN служит показателем окисления масла, вызванного длительным временем использования и/или рабочей температурой. Общее кислотное число определяется для анализа состояния моторных масел, как показателя степени окисления масла и накопления кислых продуктов сгорания топлива.
Базовые масла
Моторное масло состоит из основы (базового масла) и присадок. Свойства масла определяются прежде всего химическим составом основы, присадки же предназначены для корректировки и улучшения этих характеристик. С помощью присадок можно значительно повысить эксплуатационные свойства моторных масел, даже изготовленных из не самых лучших базовых масел. Но при длительной эксплуатации и особенно при высоких нагрузках присадки разрушаются, и конечное качество моторного масла, проработавшего в двигателе более половины положенного срока, определяется качеством базового масла. Основы масла бывают минеральные (т.е. полученные путём очистки соответствующей фракции нефти) и синтетические (т.е. полученным путём каталитического синтеза из газов). Комбинация минеральных и синтетических основ, при условии не менее 25 % синтетического базового масла, называется полусинтетической базой.
Масла это углеводороды с определенным количеством атомов углерода. Эти атомы могут быть соединены как в длинные и прямые цепи, так и разветвленные, как крона какого-нибудь дерева. Чем более прямыми будут цепи, тем лучше будут свойства масла. Так, например, ветвистым молекулам легче свернуться в шарик, поскольку они более компактные именно так происходит замерзание. То есть они будут замерзать при более высокой температуре, чем их коллеги, состоящие из прямых цепей. Итак, нам нужно получить масло, состоящее из красивых одинаковых прямых углеводородных цепей. Никаких вредных примесей, ненасыщенных связей или колец. Получаемое из нефти масло идет к идеалу, отсеивая все ненужное более или менее изощренными способами. Если менее это обычная минералка, более гидрокрекинговое масло. В процессе каталитического гидрокрекинга происходит выпрямление цепей изомеризация, но строя отборных молекул таким способом не получить. Ну а синтетическое масло? Его получают из легких газов,наращивая длину цепи до нужного числа атомов углерода. Условия этой реакции намного лучше контролируются, поэтому можно получить практически линейные цепи заданной длины.
- Минеральное, обычного качества- 100 %
- Гидрокрекинговое, улучшенное минеральное- 200 %
- Синтетическое, полиальфаолефиновое- 300 %
- Синтетическое, эстеровое- 500 %
По классификации Американского института нефти (API) базовые масла подразделяются на пять категорий:
- Группа I — базовые масла, которые получены методом селективной очистки и депарафинизации растворителями (обычные минеральные)
- Группа II- высокорафинированные базовые масла, с низким содержанием ароматических соединений и парафинов, с повышенной окислительной стабильностью (масла, прошедшие гидрообработку- улучшенные минеральные)
- Группа III- базовые масла с высоким индексом вязкости, полученные методом каталитического гидрокрекинга (НС-технология). В ходе специальной обработки улучшают молекулярную структуру масла, приближая по своим свойствам базовые масла группы III к синтетическим базовым маслам IV группы. Не случайно масла этой группы относят к полусинтетическим (а некоторые компании даже к синтетическим базовым маслам).
- Группа IV синтетические базовые масла на основе полиальфаолефинов (ПАО). Полиальфаолефины, получаемые в результате химического процесса, имеют характеристики единообразной композиции, очень высокую окислительную стабильность, высокий индекс вязкости и не имеют молекул парафинов в своем составе.
- Группа V другие базовые масла, не вошедшие в предыдущие группы. В эту группу входят другие синтетические базовые масла и базовые масла на растительной основе.
Химический состав минеральных основ зависит от качества нефти, пределов выкипания отбираемых масляных фракций, а также методов и степени их очистки. Минеральная основа самая дешевая. Это продукт прямой перегонки нефти, состоящий из молекул разной длины и разного строения. Из-за этой неоднородности нестабильность вязкостно температурных свойств, высокая испаряемость, низкая стойкость к окислению. Минеральная основа самая распространенная в мире моторных масел.
Совершенствование минеральных базовых масел проводится по двум основным направлениям. Первое, при котором масло очищается только до такой степени, чтобы в нем осталось оптимальное содержание смол, кислот, соединений серы, азота и, дополнительно, вводятся присадки для улучшения некоторых функциональных свойств. Такой метод не позволяет получить масла достаточно высокого уровня качества. Второе направление, при котором базовое масло полностью очищается от всех примесей и проводится молекулярная модификация методом гидрокрекинга. В результате получается масло, обладающее ценными свойствами для тяжелых режимов работы (высокая стойкость к деформациям сдвига при высоких скоростях, нагрузках и температурах, высокий индекс вязкости и стабильность параметров).
К какому классу относить такие масла? По цене гидрокрекинг ближе к минералке, а по качеству, как уверяет продавец, ничуть не хуже синтетики. Но мы же понимаем, что если бы дело обстояло именно так, такое дорогое удовольствие, как синтетическое масло, вымерло бы как класс. Гидрокрекинговое масло ближе к минеральному не только по цене, но и по способу получения, потому что оно тоже производится из нефти. Чем же оно тогда лучше? Как следует из названия, оно проходит более глубокую обработку при помощи гидрокрекинга. А на первых этапах его производство ничем не отличается от производства минерального масла. Из обычного минерального масла разнообразными физико-химическими методами удаляются нежелательные примеси, вроде соединений серы или азота, асфальтеновые (битумные) вещества и ароматические полициклические соединения, которые усиливают коксование и зависимость вязкости от температуры. Депарафинизацией удаляются парафины, повышающие температуру застывания масел. Однако понятно, что удалить все ненужные примеси таким методом невозможно грубо говоря, это и служит причиной худших свойств минералки. Обработка масла может продолжаться и дальше. Ведь остались еще ненасыщенные углеводороды, которые ускоряют старение масла из-за окисления, да и примеси тоже остались. Гидроочистка (воздействие водородом при высокой температуре и давлении) превращает непредельные и ароматические углеводороды в предельные, что увеличивает стойкость масла к окислению. Таким образом, масло, прошедшее гидроочистку, обладает дополнительным преимуществом. А что же гидрокрекинг? Это еще более глубокий вид обработки, когда одновременно протекает сразу несколько реакций. Каких? Удаляются все те же ненавистные серные и азотистые соединения, Длинные цепочки разрываются (крекинг) на более короткие с однородной структурой, места разрывов в новых укороченных молекулах насыщаются водородом (гидрирование). Отсюда и название гидрокрекинг. Таким образом, при гидрокрекинге налицо все признаки синтеза создания из исходного сырья нового соединения, с новой структурой и свойствами. Поэтому гидрокрекинг часто называют НС- синтезом. Но не все так просто. Некоторые компоненты нефти, которые обычно считаются вредными, местами могут быть весьма ценными. Например, смолы, жирные и нафтеновые кислоты улучшают липкость и стойкость адсорбционной пленки масла и тем самым улучшают смазывающую способность масла. Некоторые соединения серы и азота обладают антиокислительными свойствами. Таким образом, при глубокой очистке масла некоторые его смазывающие, антиокислительные и антикоррозионные свойства могут ухудшиться. Эта неприятность исправляется специальными присадками, которые добавляют уже на маслосмесительных заводах.
Итак, гидрокрекинговые масла это продукты перегонки и глубокой очистки нефти. Гидрокрекинг отбрасывает все ненужное, ну а если захватывается что-то полезное, необходимые свойства придаются с помощью присадок. Но четко отфильтровать ненужные примеси сложно поэтому имеет место большее нагарообразование и содействие коррозии у гидрокрекинговых масел по сравнению синтетикой. Гидрокрекинговое масло получается близким по качеству к синтетике, но быстрее стареет, теряет свои свойства. Зато они обладают высоким индексом вязкости, противоокислительной стойкостью и стойкостью к деформациям сдвига, а от износа могут защищать даже лучше, чем синтетические. С другой стороны, синтетика более однородна в смысле линейности углеводородных цепей, что дает преимущества, например, в температуре замерзания. Есть еще один нюанс. Гидрокрекинг процесс каталитический, как, впрочем, и синтез. Но если первый идет, например, на никеле, то второй на углероде. Понятно, что углерод в этом смысле лучше, так масло будет избавлено от нежелательных примесей соединений катализаторов.
Самое интересное, что подавляющее большинство моторных масел, позиционируемых как полусинтетические, и даже полностью синтетические, являются ни чем иным, как гидрокрекинговыми маслами. Это общая тенденция крупнейших производителей масел. Программа BP (кроме Visco 7000), Shell (кроме 0W40), частично Castrol, Mobil, Esso, Chevron, Fuchs построена на гидрокрекинге. Все масла южно-корейской фирмы ZIC- это только гидрокрекинг.
Полусинтетика
Это смесь минеральных и синтетических базовых масел, и может содержать в своем составе от 20 до 40 процентов «синтетики». Специальных требований к производителям полусинтетических смазочных материалов в отношении того, какое количество синтетического базового масла (синтетического компонента) должно быть в готовом моторном масле — нет. Также нет никаких предписаний, какой синтетический компонент (базовое масло группы III или группы IV) использовать при изготовлении полусинтетического смазочного материала. По своим характеристикам эти масла занимают промежуточное положение между минеральными и синтетическими маслами, т.е. их свойства лучше обычных минеральных масел, но хуже синтетических. По цене же эти масла значительно дешевле синтетических.
Синтетические масла
Такие маста обладают исключительно удачными вязкостно-температурными характеристиками. Это, во-первых, гораздо более низкая, чем у минеральных, температура застывания (-50°С, -60°C) и очень высокий индекс вязкости, что существенно облегчает запуск двигателя в морозную погоду. Во-вторых, они имеют более высокую вязкость при рабочих температурах свыше 100°C — благодаря этому масляная пленка, разделяющая поверхности трения, не разрушается в экстремальных тепловых режимах. К прочим достоинствам синтетических масел можно отнести повышенную стойкость к деформациям сдвига (благодаря однородности структуры), высокую термоокислительную стабильность, то есть малую склонность к образованию нагаров и лаков (лаками называют откладывающиеся на горячих поверхностях прозрачные, очень прочные, практически ничем не растворимые пленки, состоящие из продуктов окисления), а также небольшие по сравнению с минеральными маслами испаряемость и расход на угар. Немаловажно и то, что синтетика требует введения минимального количества загущающих присадок, а особо высококлассные ее сорта не требуют таких присадок вообще, следовательно, эти масла очень стойкие — ведь разрушаются в первую очередь именно присадки. Все эти свойства синтетических масел способствуют снижению общих механических потерь в двигателе и уменьшению износа деталей. Кроме того, их ресурс превышает ресурс минеральных в 5 и более раз. Основным фактором, ограничивающим применение синтетических масел, является их высокая стоимость. Они в 3-5 раз дороже минеральных.
В роли синтетической базы выступают обычно полиальфаолефины (ПАО) или эстеры, либо их смесь. ПАО — это углеводороды с длиной цепочки порядка 10…12 атомов. Получают ее путем полимеризации (проще говоря соединения) коротких углеводородных цепочек мономеров из 3…5 атомов. Сырьем для этого обычно служат нефтяные газы – бутилен и этилен. Эстеры представляют собой сложные эфиры продукты нейтрализации карбоновых кислот спиртами. Сырье для производства растительные масла, например рапсовое, или, даже, кокосовое. Эстеры обладают рядом преимуществ перед всеми другими известными основами. Во-первых, молекулы эстеров полярны, то есть электрический заряд распределен в них так, что молекула сама прилипает к металлу. Во вторых, вязкость эстеров можно задавать еще на этапе производства основы: чем более тяжелые спирты используются, тем большей получается вязкость. Можно обойтись без всяких загущающих присадок, которые выгорают в ходе работы в двигателе, приводят к старению масла. Современная технология позволяет создавать полностью биологически разлагаемые масла на основе эстеров, т. к. эстеры являются экологически чистыми продуктами и легко утилизируются. Однако все эти плюсы могут показаться слишком дорогим удовольствием. Эстеровая база стоит в 5…10 раз дороже минеральной! Поэтому их содержание в моторных маслах обычно ограничено 3-5%, и применяются они лишь в самых совершенных продуктах, обычно составляющих вершину товарного ряда компаний-лидеров.
Присадки
При современном уровне развития двигателестроения использование масла без присадок практически невозможно, т.к. невозможно создание масел, которые обеспечили бы эффективную защиту двигателя и одновременно не разрушались в течение длительного времени. Все современные моторные масла содержат в своем составе пакет (набор) присадок, содержание которых суммарно может достигать 20%.
Присадки можно разделить на несколько типов:
- Вязкостно-загущающие присадки
- Моющие присадки (детергенты и дисперсанты)
- Противоизносные присадки
- Ингибиторы окисления (антиокислительные присадки)
- Ингибиторы коррозии и ржавления
- Антипенные присадки
- Модификаторы трения
- Депрессорные присадки.
Очистка машинных масел
Автомобильные масла в процессе работы накапливают в себе образивные материалы и химические примеси. На крупных АТП иногда могут использовать системы регинирации моторных масел. Регенирация — это механическия и химическая очистка масла и выполняется она на специальных установках по регенерации отработанных масел.
Вязкостно-загущающие присадки.
Механизм их действия основан на изменении формы макромолекул полимеров в зависимости от температуры. В холодном состоянии эти молекулы, будучи свернутыми в спиральки, не влияют на вязкость масла, при нагреве же они распрямляются, и масло густеет, или, точнее, не становится слишком жидким. Фактически это присадка повышает индекс вязкости масла. Масла, в состав которых входят вязкостные присадки (до 10%), называют загущенными — это зимние и всесезонные сорта. В зависимости от количества добавленной вязкостно-загущающей присадки можно получить масла с разными вязкостями. Чем выше изначальный индекс вязкости базового масла, тем меньше вязкостно-загущающей присадки необходимо добавлять. Если индекс вязкости достаточно высок, можно получить моторное масло, не содержащее загустителей. Современные тенденции в области разработки моторных масел направлены на создание моторных масел с невысокими диапазонами вязкостей. Причина заключается в том, что такие масла, как правило, обеспечивают энергосберегающие свойства (т.е. позволяют экономить топливо) и содержат невысокое количество загустителя или вообще его не содержат. Почему большое количество загустителя в моторном масле нежелательно для двигателя? В двигателе множество пар трения, где масло подвергается высоким сдвиговым нагрузкам, в результате которых происходит разрушение загустителя. Это приводит к потере вязкости моторного масла, ухудшению функций смазывания (уменьшение толщины смазывающей пленки), а продукты разрушения загустителя являются потенциальным источником нагаров и лаковых отложений в двигателе. Масла с большими диапазонами вязкостей ориентированы исключительно на спортивное применение. Они предназначены только для экстремальных условий эксплуатации, в которых наиболее важны высокие вязкостные свойства, а не их стабильность с течением времени.
Моющие присадки.
Моющие присадки нужны для предотвращения образования лаковых и сажевых (в дизелях) отложений на деталях двигателя. Они, как правило, состоят из детектирующих компонентов, которые вымывают продукты окисления масла и износа деталей и несут их к фильтру, и диспергирующих, способствующих дроблению крупных частиц нагара на мелкие (не больше микрона).
Детергенты. Принцип действия этих присадок в двигателе в точности такой же, как и у моющих средств, использующихся в быту. Кроме этого,детергенты обладают щелочными свойствами, т.е. могут нейтрализовать кислоты. Кислоты образуются при сгорании серы, содержащейся в топливе, особенно дизельном и при окислении самого масла. Нейтрализуя такие кислые продукты, эффективно предотвращается коррозия деталей двигателя. Т.е. вторая важная функция таких присадок нейтрализация кислот и антикоррозионные свойства.
Дисперсанты. Основная задача этих присадок поддержание загрязнений в масле в растворенном состоянии, предотвращение их отложений на деталях двигателя, масляных каналах и др., диспергирование (растворение) крупных загрязнений. Диспергирующие добавки удерживают грязь в мелкодисперсном состоянии, не дают ей слипнуться в большие комки и пригореть к металлу. Естественно, грязь проходит по всей системе смазки, фильтр ее пропускает, но это гораздо меньшее зло, чем если бы она осаждалась на металле. Кстати, результаты работы моющих присадок можно наблюдать почти сразу после замены старого масла на новое. Вроде только-только залил, немного поездил — и уже черное! Не волнуйтесь. В данном случае чернота масла свидетельствует о высокой моющей способности его присадок — они смыли грязь со стенок, довели ее до безопасной консистенции, и масло гоняет ее по системе смазки.
Противоизносные присадки.
Основная функция предотвращение изнашивания трущихся деталей двигателя в местах, где невозможно образование масляной пленки необходимой толщины. Они работают путём абсорбирования в поверхность металла, а затем химически реагируя с ней в процессе контакта металл-металл, тем более активно, чем больше тепла при этом контакте образуется, создавая при этом особую металлическую плёнку со скользящими свойствами, чем и предотвращают абразивный износ.
Ингибиторы окисления
(антиокислительные присадки). В процессе работы масло в двигателе постоянно подвергается воздействию высоких температур, кислорода воздуха и окислов азота, что вызывает его окисление, разрушение присадок и загущение. Противоокислительные присадки замедляют окисление масел и неизбежно следующее за ним образование коррозионно-активных осадков. Принцип их действия заключается в химической реакции при высоких температурах с продуктами, вызывающими окисление масла. Делятся на присадки-ингибиторы, работающие в общем объеме масла, и на термоокислительные присадки, выполняющие свои функции в рабочем слое на нагретых поверхностях.
Ингибиторы коррозии и ржавления.
Ингибиторы коррозии призваны защищать поверхность деталей двигателя от коррозии, вызываемой органическими и минеральными кислотами, образующимися при окислении масла и присадок. Механизм их действия образование защитной пленки на поверхности деталей и нейтрализация кислот. Ингибиторы ржавления в основном призваны защищать стальные и чугунные стенки цилиндров, поршни и кольца. Механизм действия схожий. Противокоррозионные присадки часто путают с противоокислительными. Это разные вещи. Противоокислительные, как говорилось выше, защищают от окисления само масло. Противокоррозионные же — поверхность металлических деталей. Они способствуют образованию на металле прочной масляной пленки, предохраняющей его от контакта с всегда присутствующими в объеме масла кислотами и водой.
Антипенные присадки.
При сильном перемешивании масла с воздухом, что в частности наблюдается при работе двигателя, когда коленвал интенсивно взбалтывает масло в картере, возможно повышенное образование пены. Этому процессу также способствуют различные загрязнения, присутствующие в масле. Ее формирование значительно ухудшает эффективность смазывания деталей двигателя, что может привести к повышенному износу и ухудшению теплоотвода. Противопенные присадки (обычно это силиконы или полисилоксаны) не растворяются в моторных маслах, а присутствуют в виде мельчайших капелек. Их действие основано на разрушении пузырьков воздуха. Обойтись без этих присадок практически невозможно, но их присутствие не должно превышать тысячных долей процента — при термическом разложении силикона образуется оксид кремния, который является сильным абразивом.
Модификаторы трения.
Для современных двигателей все чаще стараются использовать масла с модификаторами трения, позволяющими снизить коэффициент трения между трущимися деталями с целью получения энергосберегающих масел. Наиболее известные модификаторы трения графит и дисульфид молибдена. В современных маслах их очень сложно использовать, поскольку эти вещества нерастворимы в масле, а могут быть только диспергированы в нем в виде маленьких частиц. Это требует введения в масло дополнительных дисперсантов и стабилизаторов дисперсии, однако это все равно не позволяет использовать такие масла в течение длительного времени. Поэтому в настоящий момент в качестве модификаторов трения обычно используют маслорастворимые эфиры жирных кислот, обладающих очень хорошим прилипанием к металлическим поверхностям, формированием на них слоя молекул, снижающих трение.
Депрессорные присадки
(для минеральных масел). При сильном понижении температуры масла в нем начинают образовываться кристаллы парафинов, что ведет к потере подвижности масла и в результате ухудшается низкотемпературный пуск двигателя и прокачиваемость масла по каналам. В процессе производства базовых масел часть парафинов удаляют, но полное их удаление по технологическим и экономическим причинам невозможно (сильно возрастают затраты на получение базового масла). Обычно минеральное базовое масло имеет температуру застывания около -15°С. Возможность получения минеральных моторных масел с температурами застывания -30°С -35°С достигается путем введения в масло депрессорных присадок. Эти присадки предотвращают срастание кристаллов парафина, но не предотвращают их появление вообще (принцип действия такой же, как у дизельных антигелей).
Классификация масел
Для облегчения выбора масла требуемого качества для конкретного типа двигателя и условий его эксплуатации существуют системы классификации. В настоящее время одновременно существуют несколько систем классификации моторных масел API, ILSAC, АСЕА и ГОСТ (для стран СНГ). В каждой системе моторные масла подразделяются на ряды и категории, основанные на уровне качества и назначении. Эти ряды и категории созданы по инициативе национальных и международных организаций нефтеперерабатывающих компаний и автопроизводителей. Назначение и уровни качества являются основой ассортимента масел. Наряду с общепринятыми системами классификаций существуют и требования (спецификации) производителей автомобилей. Кроме классификаций масел по уровню качества используется и система классификации по вязкости- SAE. Подробнее о системах классификации моторных масел можно прочитать здесь.
Рекомендации
Для того чтобы двигатель отработал расчетный ресурс, необходимо соблюдать несколько простых правил:
— При выборе моторного масла руководствоваться перечнем масел, допущенных к применению производителем автомобиля.
— Замену масла производить в сроки, установленные производителем.
— Интервал замены масла необходимо уменьшить при эксплуатации автомобиля в условиях, когда движение осуществляется преимущественно на низших передачах (в городе, по бездорожью), так как двигатель совершает большее количество оборотов на тысячу километров пробега, чем при движении по трассе.
— Для автомобилей со значительным пробегом замену масла также нужно производить чаще, потому что условия его работы в изношенных двигателях более жесткие (прорыв раскаленных газов в картер из-за увеличенных зазоров между поршнями и цилиндрами и т. д.).
— Недопустимо смешивать минеральное масло с синтетическим или полусинтетическим из-за разной растворимости присадок в минеральной и синтетической основах. Результатом смешивания может быть выпадение присадок в нерастворимый осадок. Доливать следует тот же сорт масла, который залит в двигатель. Масла разных производителей содержат различные пакеты присадок, которые могут быть несовместимы.
— Если в процессе эксплуатации масло заменялось своевременно и имело соответствующее качество, промывку двигателя проводить не надо. Если неизвестно, какое масло заливал прежний владелец автомобиля, перед заменой необходимо промыть систему смазки специально предназначенным для этого промывочным маслом. В противном случае свежее высококачественное масло может смыть большое количество отложений, что приведет к быстрому засорению фильтра системы смазки.
— Добавление в моторное масло различных препаратов автохимии может улучшить одни его свойства и резко ухудшить другие, что неблагоприятно скажется на состоянии двигателя. Это связано с тем, что в качественном масле пакет присадок точно сбалансирован, а добавление в него какого-либо препарата, как правило, нарушает этот баланс.
— В непрогретом до рабочей температуры масла щелочные присадки не успевают нейтрализовать кислоты, образующиеся из продуктов неполного сгорания топлива, соответственно происходит усиленный коррозионный износ поршней, их колец и цилиндров. Под нагрузкой (при движении автомобиля) двигатель прогревается быстрее. Поэтому в холодное время его прогрев на месте следует производить не более 3 — 5 мин.
Определение щелочного числа моторного масла (TBN)
Пользователи автомобилей выбирают лубриканты по допускам изготовителя, температурным параметрам и вязкости. Однако такая картина подбора не полная. Критически важным аспектом эффективности и долговечности смазок, является содержание щелочных элементов. Далее описан процесс определения щелочного числа моторного масла и что такое число TBN.
Для чего нужна щелочь в масле
Щелочное число в масле лучше больше или меньше? Во время эксплуатации транспортного средства, двигатель подвергается постоянным перегрузкам. Процесс сгорания топливовоздушной смеси сопровождается выделением осадочных компонентов кислотной природы.
Остатки формулы, попадая в картерный отсек, оседают на стенках силовой установки, провоцируя увеличение процесса окисления поверхностей. Это подвергает мотор интенсивному износу. Дополнительно, шламовые отложения постепенно нарушают циркуляцию основного лубриканта по причине сужения напорных магистралей. Действие дополнительно перегружает узлы конструкции.
Финальным последствием влияния кислот является масляное голодание подшипников и трущихся поверхностей. Это приводит к полной деструкции агрегатов и отказу двигателя.
Щелочные присадки выступают нейтрализаторами кислотных составляющих продуктов горения. При работе масла, основная часть формулы направлена на смазку и охлаждение силовой установки. Моющие компоненты – растворяют твердые отложения, препятствуют появлению новых шламов. Диспергенты отвечают за удерживание во взвешенном состоянии, расщепление новых кислот на нейтральные фракции безопасные для силового агрегата.
Основные щелочные присадки
В качестве щелочных присадок производители применяют комплекс веществ, состоящий из таких элементов:
- кальций;
- барий;
- натрий;
- магний.
Дополнительно можно встретить цинк, и другие элементы щелочного типа. Однако за основу принимается именно эта группа присадок.
На что влияет щелочное число моторного масла
При сгорании горючей смеси кислоты выделяются постоянно. Следовательно, нейтрализация щелочами должна происходить в течение всего периода эксплуатации автомобиля.
В процессе работы лубриканта, добавочные нейтрализаторы кислот постепенно расходуются на расщепление вредных веществ.
После определенной отметки расхода, масло теряет свойства и не может препятствовать образованию отложений.
Показатель TBN характеризует запас компонентов для эффективной защиты двигателя. Соответственно чем выше значение – тем лучше.
Показатели щелочи для дизеля и бензина
Щелочное число моторного масла характеризует способность смазки нейтрализовывать вредные кислоты. По природе химической формулы, дизельное топливо при сгорании выделяет большее количество кислот, чем бензины или этанольные смеси. Следовательно, для двигателей, работающих на солярке, показатель TBN будет максимальным ( примерно 10 мг). Бензиновые установки менее требовательны. Поэтому изготовители априори закладывают меньше мгКОН/г в масло (около 2 мг).
Способы определения щелочного числа
В 2022 году не существует определенной, общепринятой системы характеристики TBN. Институты мировых компаний предлагают различные способы определения показателя, разработанные по принципу предельной эффективности и рациональности.
Ниже приведены самые популярные и доступные способы.
Титрометрия
Процедура выполняется исключительно в химической лаборатории, при наличии реагентов и специализированного оборудования – титрометра.
Показатель щелочного числа определяется по расходу количества реагента, необходимого для проведения реакции. Конечный результат точен и не требует дополнительных исследований.
Вычислительный метод
Данная методика условна, но практикуется повсеместно.
Суть в ограничениях пропорций горючей смеси – по регламенту дизель не может содержать более 0,5 % сернистых компонентов.
Для вычислений, необходимо умножить показатель массовой доли серы на 20 единиц, для получения требуемого количества щелочи в масле. К примеру:
0,5% × 20 = 10 мг КОН/г, где:
- «0,5» — максимальный процент содержания серы;
- «20» — коэффициент умножения;
- «10» — требуемое общее количество щелочных присадок для полной нейтрализации кислот.
Видео
Полноценные испытания и способы точного определения щелочного числа моторного масла «по карману» только компаниям, производящим лубриканты или гоночным командам. Доступные методы пользовательского уровня не обеспечивают достаточной точности и надежности. Поэтому автопроизводители рекомендуют руководствоваться указаниям технического паспорта транспортного средства.
Новое понимание щелочного числа моторного масла (TBN)
Показатель общего щелочного числа TBN (англ. TBN – Total Base Number) дает представление о количестве имеющихся в масле щелочных соединений, которые нейтрализуют органические и неорганические кислоты, концентрирующиеся в поддонах картеров дизельных ДВС во время их работы.
КАК ИЗМЕРЯЕТСЯ
Значение выражается в миллиграммах гидроксида калия, требуемого для титрования 1 грамма тестируемого образца, растворённого в специальном растворителе до установленной точки эквивалентности.
ГДЕ ЕЩЕ ЭТО ВАЖНО
TBN играет важную роль в классификации смазочных материалов (ACEA, Global DHD и др.), в производственных стандартах компаний-производителей смазочных материалов и др.