Выбери какой вид двигателя изображен на картинке двигатель внутреннего сгорания паровая турбина
Перейти к содержимому

Выбери какой вид двигателя изображен на картинке двигатель внутреннего сгорания паровая турбина

  • автор:

Двигатель внутреннего сгорания. Паровая турбина

Методы: словесный, наглядный, информационно-рецептивный, репродуктивный, проблемного изложения, исследовательский.

Оборудование: мультимедийная установка, модель ДВС.

  • А.В.Перышкин Физика – 8 класс учебник
  • Презентация к уроку.
  • Тесты

Характеристика класса.

Выбранные формы и методы урока соответствуют психологическим особенностям детей данного класса. В основном визуальное внимание детей слабо развито, необходимо применять зрительные элементы, поэтому для привития интереса к теме использовалась мультимедийная установка.
Согласно результатов диагностик, выявилось, что класс достаточно сложный: 2-3 человека высоко и достаточно подготовлены, 5 человек – скорее недостаточно и слабо обучены. В целом, у класса нет проблем с умением читать и понимать прочитанное. Записывать краткое содержание текста, неплохо работают по алгоритму, а нестандартно мыслить – затрудняются.
Таким образом, у учащихся данного класса, необходимо формировать умения и навыки учебного диалога, опираясь на умения работать с текстом, использовать индивидуальные, групповые и парные формы работ, использовать методы развития познавательного интереса, занимательность, создание ситуации успеха, учебной дискуссии.

  1. Оргмомент (метод: словесный)
  2. Целеполагание и мотивация (метод: словесный)
  3. Подготовка к восприятию нового материала (метод: репродуктивный, форма: фронтальная)
  4. Изучение нового материала (метод: объяснительно – иллюстративный, исследовательский, наглядный, форма: индивидуальная.)
  5. Закрепление изученного материала (метод: репродуктивный, наглядный, исследовательский, частично – поисковый, форма: индивидуальная, парная)
  6. Домашнее задание
  7. Рефлексия.

I. Подготовка к восприятию нового материала:

  • Какие два вида механической энергии вы знаете?
  • Какую энергию называют кинетической? Потенциальной?
  • Приведите примеры превращения потенциальной энергии тела в кинетическую; кинетической энергии – в потенциальную.
  • Дайте определение внутренней энергии тела.
  • Приведите примеры превращения механической энергии тела в его внутреннюю энергию.

II. Изучение нового теоретического материала

1. Историческая справка

В III веке до нашей эры, великий греческий механик и математик Архимед построил пушку, которая стреляла с помощью пара. Рисунок пушки Архимеда и ее описание были найдены спустя 18 столетий в рукописях великого итальянского ученого, инженера и художника Леонардо да Винчи.

Первая паровая турбина (Приложение 1. Слайд 3)

Несколько иначе представлял себе двигатель, использующий энергию пара, Джованни Бранка, живший на век позже великого Леонардо. Это было колесо с лопатками, в которое с силой ударяла струя пара, благодаря чему колесо начинало вращаться. По существу, это была первая паровая турбина. (Сообщение учеников)

(Приложение 1. Слайд 4) 1698г. Томас Сэвери (английский инженер) создал машину, которая преобразовывала внутреннюю энергию в механическую (тепловой двигатель), его использовали для откачки воды из угольных шахт.

(Приложение 1. Слайд 5) 1710г. Томас Ньюкомен (английский инженер) предложил пароатмосферный двигатель , в котором пар внутри цилиндра толкал вверх поршень. Для возврата в нижнее положение его охлаждали, пар конденсировался, давление в цилиндре падало, и под действием атмосферного давления поршень опускался вниз. Затем цилиндр снова нагревали, чтобы заставить пар толкать поршень вверх. На всё это уходило много времени и, двигатель работал очень медленно и с низким КПД.

(Приложение 1. Слайд 6) 1766 г. Иван Иванович Ползунов (русский изобретатель) разработал чертежи двухцилиндровой паровой машины. Для ее изготовления Ползунову пришлось сделать различные инструменты, токарный станок для обработки металла «на водяном ходу». При этом Ползунову удалось изготовить все детали паровой машины всего за 13 месяцев. Некоторые детали весили до 2720 килограммов. Его машина должна была заменить водяной двигатель на заводе в Барнауле.
Из оборудования на заводе были только воздуходувные мехи и молоты для ковки металла. И их приводили в движение силой воды. Поэтому заводы строили на берегах рек. Если река становилась более мелководной, то производство останавливалось.
Иван Иванович Ползунов решил заменить водяной двигатель и ручной труд на «огненную машину».
В 1765 году Ползунов разработал специальный поплавковый регулятор уровня в котле.
К сожалению, увидеть машину в работе Ползунову не удалось, он умер за два месяца до пуска машины в эксплуатацию, 27 мая 1766 года. Его паровая машина окупила себя всего за два месяца. К сожалению, после небольшой поломки хозяева машины не смогли ее починить.

(Приложение 1. Слайд 7) 1769 г. Джеймс Уатт (шотландский инженер) превзошёл своих предшественников и учителей. Он создал усовершенствованную паровую машину. В его двигателе пар направлялся в отдельную камеру для конденсации, тепловые потери двигателя были относительно небольшими. Кроме того, двигатель Уатта был более быстродействующим, поскольку можно было подавать большее количество пара в цилиндр, как только поршень возвращался в свое исходное положение. Для паровой машины нашлись многочисленные практические применения.
Паровые машины обеспечивали энергию для печатания газет, ткачества и для работы стиральных машин в «паровых» прачечных. Паровые двигатели использовались на площадках аттракционов, а фермеры с помощью паровой тяги пахали землю. Уборщики пользовались работающими на пару пылесосами, а в престижных городских парикмахерских были даже щетки для массажа кожи головы с паровым приводом.
Паровые машины устанавливались на паровозы, пароходы.

2. Теоретический материал (ученики работают с текстом по плану, каждый пункт сопровождается слайдом.).

План: (написан на доске)

1. Название
2. Основные части
3. Основные понятия

Двигатель внутреннего сгорания — очень распространенный вид теплового двигателя. Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

б) Основные части

Двигатель состоит из цилиндра 1, в котором перемещается поршень 2, соединенный при помощи шатуна 3с коленчатым валом 4.В верхней части цилиндра имеется два клапана 5, которые при работе двигателя автоматически открываются и закрываются в нужные моменты. Через левый клапан в цилиндр поступает горючая смесь, которая воспламеняется с помощью свечи 6, а через правый клапан выпускаются отработавшие газы.

в) Основные понятия

Крайние положения поршня в цилиндре называют мертвыми точками. Расстояние, проходимое поршнем от одной мертвой точки до другой, называют ходом поршня. Один рабочий цикл в двигателе происходит за четыре хода поршня, или, как говорят, за четыре такта. Поэтому такие двигатели называют четырехтактными. Впуск, сжатие, рабочий ход, выпуск.

Физические принципы работы

В цилиндре двигателя периодически происходит сгорание горючей смеси, состоящей из паров бензина и воздуха. Температура газообразных продуктов сгорания достигает 1600-1800 °С, давление на поршень при этом резко возрастает. Расширяясь, газы толкают поршень, а вместе с ним и коленчатый вал, совершая при этом механическую работу. При этом они охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.
Любой тепловой двигатель превращает в механическую энергию только незначительную часть энергии, которая выделяется топливом. Большая часть энергии топлива не используется полезно, а теряется в окружающем пространстве.
Для характеристики экономичности различных двигателей введено понятие коэффициента полезного действия – КПД. КПД ДВС 20-40%, паровых турбин – выше 30%.

Рассмотрим более подробно схему работы ДВС

(Приложение 1. Слайд 10) В начале первого такта поршень движется вниз. Объем над поршнем увеличивается, в цилиндре создается разрежение. Открывается левый клапан и в цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, данный клапан закрывается.
(Приложение 1. Слайд 11) В начале второго такта поршень движется вверх и сжимает горючую смесь. В конце второго такта, когда поршень дойдет до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и взрывается.
(Приложение 1. Слайд 12) В начале третьего такта, образующиеся при сгорании газы давят на поршень и толкают его вниз, двигатель совершает работу. В конце третьего такта открывается правый клапан, и через него продукты сгорания выходят из цилиндра в атмосферу. Движение поршня передается шатуну, а через него коленчатому валу с маховиком.
(Приложение 1. Слайд 13) В начале четвёртого такта поршень начинает двигаться вверх, благодаря инерции маховика. При этом выпуск продуктов сгорания продолжается. В конце четвёртого такта правый клапан закрывается.
Итак, цикл двигателя состоит из следующих четырех процессов (тактов): впуска, сжатия, рабочего хода, выпуска.

Физминутка

3. «Мозговой штурм» Тестирование. (Ученики отвечают на вопросы теста по карточкам) (Приложение 1. Слайд 15)

III. Закрепление

1. (Приложение 1. Слайд 14) По желанию учащиеся рассказывают принцип действия двигателя по предложенному слайду.

2. Применение двигателей (Ученики перечисляют пользу и вред двигателя)

(Приложение 1. Слайд 18) В автомобилях используют чаще всего четырехцилиндровые двигатели внутреннего сгорания. Работа цилиндров согласуется так, что в каждом из них поочередно происходит рабочий ход и коленчатый вал все время получает энергию от одного из поршней. Имеются и восьмицилиндровые двигатели. Многоцилиндровые двигатели в лучшей степени обеспечивают равномерность вращения вала и имеют большую мощность.
Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах. Польза двигателей несомненна. В настоящее время мощность всех двигателей на Земле составляет 1010 кВт. И пока она справляется, перерабатывая углекислый газ. Однако уже с мощностью в 1012 кВт ей не справится. (Приложение 1. Слайды 19, 20)

3. Защита окружающей среды от двигателей внутреннего сгорания

В цилиндрах двигателя проходит окисление мелкораспыленного и испаренного топлива кислородом воздуха с образованием тепла, углекислого газа и воды. За тысячные доли секунды, отводимые на этот процесс, при каждом такте работы двигателя, часть топлива не успевает сгореть. Продукты его неполного сгорания выбрасываются в атмосферу из выхлопной трубы. Дизели выбрасывают еще и сернистый ангидрид, образующийся при горении топлива в цилиндрах.
Из-за загрязнения изменяется климат. В атмосфере возросла концентрация парниковых газов, углекислоты, метана, оксида азота. Молекулы этих газов поглощают тепловое излучение поверхности земли и частично направляют его обратно, создавая парниковый эффект. Из-за изменения климата исчезают и отдельные виды животных и птиц. Уже так много видов животных занесено в красную книгу! (Приложение 1. Слайд 21)

В разных ситуациях мы вспоминаем замечательные слова Б. Окуджавы, в том числе и при решении экологических проблем:

Возьмемся за руки, друзья!
Возьмемся за руки, друзья,
Чтоб не пропасть поодиночке.

– Спасем Землю! Это может сделать каждый из вас.

  • Параграфы 22, 23
  • Найти дополнительный материал о замене ДВС электродвигателями.
  • Составить памятку для людей, призывающую их спасти Землю.

Самоанализ урока

Данный урок звено большой темы «тепловые явления» – 25 часов. Его структура опирается на знания предыдущих тем уроков.

Согласно результатов диагностик, выявилось, что класс достаточно сложный: 2-3 человека высоко и достаточно подготовлены, 5 человек – скорее недостаточно и слабо обучены. В целом, у класса нет проблем с умением читать и понимать прочитанное. Записывать краткое содержание текста, неплохо работают по алгоритму, а нестандартно мыслить – затрудняются.

Таким образом, у учащихся данного класса, необходимо формировать умения и навыки учебного диалога, опираясь на умения работать с текстом, использовать индивидуальные, групповые и парные формы работ, использовать методы развития познавательного интереса, занимательность, создание ситуации успеха, учебной дискуссии.

В ходе урока была возможность повторить тему предыдущих уроков, для восприятия нового материала. Выбранная мною структура комбинированного урока и его содержание, рациональны для решения поставленных задач и изучения заявленной темы.

Для повышения познавательного интереса уч-ся к предмету предложила обучающимся подготовить дополнительный материал по истории развития паровой машины.

В начале урока были четко поставлены цели и задачи, обозначены виды деятельности. Закрепление знаний прошлого урока осуществлялось через фронтальный опрос и дополнительный материал. Логический переход к изучению новой темы происходил при помощи мультимедийной установки, что дало возможность привлечь внимание детей к изучаемой теме. В основу изучения нового материала, в основном лёг метод проблемного изложения.

Главный акцент делался на понимание и усвоение знаний учащимися принципа работы двигателя внутреннего сгорания. Кроме этого частично использовались такие методы обучения как информационно – рецептивный (через предъявление учителем и воспроизведение знаний учащимися) на этапе изучения нового материала; репродуктивный (через составление и предъявление заданий на воспроизведение знаний и способов умственной и практической деятельности) на этапе закрепления (индивидуальное выполнение работы с взаимопроверкой), выяснили какой вред окружающей среде наносят двигатели внутреннего сгорания, как защитить окружающую среду.

В конце урока применялась рефлексия. Атмосфера на уроке была деловой и дружеской; уровень усвоения знаний в основном – средний. Результаты взаимопроверки и проверки работ показали, что с заданием не справилось 1 человек. Из учащихся, присутствующих в классе, активно работало – 53%). Урок результативный, отметки получило 14 человек («5» – 3; «4» – 6; «3» – 5).

Считаю, что все поставленные цели и задачи в ходе урока были реализованы.

В основу дифференциации положены объём и содержание, а также выполнение д/з (Для желающих предложила найти дополнительный материал и составить памятку для людей, призывающую их спасти Землю). Объём д/з соответствует требованиям программного материала и не должен вызвать особых затруднений при его выполнении.

Двигатель: описание, виды, устройство, работа ,фото, видео

Двигатель является главной системой в любом транспортном средстве. Этот компонент автомобиля можно сравнивать с сердцем человека, то есть, человек умрет без сердца – так же и автомобиль без двигателя. Двигательная система отвечает за преобразование топливной энергии в механическую энергию, которая впоследствии выполняет полезную работу. Сегодня в качестве энергии может выступать энергия сгорания топлива, электрическая энергия и т.д. Источник энергии всегда находится в автомобили. Он должен пополняться через определенный промежуток времени, чтобы автомобиль мог в итоге передвигаться. Так, механическая энергия передается на ведущие колеса от двигателя. Эта передача обычно осуществляется при помощи трансмиссии.

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Показатели двигателей

Показателями двигателя называют величины, характеризующие его работу. Помимо конструктивных параметров, они зависят от особенностей и настроек систем питания и зажигания, степени износа деталей и пр.

Давление в конце такта сжатия (компрессия) является показателем технического состояния (изношенности) цилиндро-поршневой группы и клапанов.

Крутящий момент на коленчатом валу двигателя определяет силу тяги на колесах: чем он больше, тем лучше динамика разгона автомобиля. Равен произведению силы на плечо (рис. 3) и измеряется в Н·м (Ньютон на метр), ранее в кгс.м (килограмм-сила на метр).

Крутящий момент увеличивается с ростом:
рабочего объема . Поэтому двигатели, которым необходим значительный крутящий момент, обладают большим объемом;
давления горящих газов в цилиндрах, которое ограничено детонацией (взрывное горение бензо-воздушной смеси, сопровождаемое характерным звонким звуком. Ошибочно называется «стуком поршневых пальцев») или ростом нагрузок в дизелях.

Максимальный крутящий момент двигатель развивает при определенных оборотах (см. ниже), они вместе с его величиной указываются в технической документации.

Мощность двигателя — величина, показывающая, какую работу он совершает в единицу времени, измеряется в кВт (ранее в лошадиных силах). Одна лошадиная сила (л.с.) приблизительно равняется 0,74 кВт. Мощность равна произведению крутящего момента на угловую скорость коленвала (число оборотов в минуту, умноженное на определенный коэффициент).

Двигатели большей мощности производители получают увеличением:
рабочего объема, что, в свою очередь, приводит к росту габаритов двигателя и ограничению допустимых максимальных оборотов из-за значительных сил инерции увеличившихся деталей;
оборотов коленчатого вала, число которых ограничено инерционными силами и увеличением износа деталей. Высокооборотный двигатель одинаковой мощности (при прочих равных условиях — конструкции двигателя, технологии изготовления, применяемых материалах и т.д.) с низкооборотным обладает меньшим сроком службы, так как в среднем для одного и того же пробега его коленчатый вал будет совершать больше оборотов;
давления в цилиндре путем повышения степени сжатия либо наддувом воздуха посредством турбо- или механических нагнетателей. Для применения наддува степень сжатия вынужденно уменьшают для предотвращения детонации (у бензиновых двигателей) и снижения жесткости работы (повышенные нагрузки в цилиндро-поршневой группе дизеля, сопровождаемые чрезмерным шумом) (у дизелей). Наддув позволяет, например, сохранить мощность при меньшем рабочем объеме.

Номинальная мощность — гарантируемая производителем мощность при полной подаче топлива на определенных оборотах. Именно она, а не максимальная мощность, указывается в технической документации на двигатель.

Удельный расход топлива — это количество топлива, расходуемого двигателем на 1 кВт развиваемой мощности за один час. Является показателем совершенства конструкции двигателя: чем расход ниже, тем более эффективно используется энергия сгорающего в цилиндрах топлива.

Основные элементы двигателя

Ниже на рисунке показана схема расположения элементов в цилиндре. В зависимости от модели двигателя, их может быть 4, 6, 8 и даже больше. На рисунке обозначены следующие элементы: A – распределительный вал. B – крышка клапанов. C – выпускной клапан. Открывается строго в нужное время для того, чтобы отработанные газы выводились за пределы камеры сгорания. D – отверстие для выхода отработанных газов. E – головка блока цилиндра. F – пространство, заполняемое охлаждающей жидкостью. В процессе работы двигатель сильно нагревается, поэтому его необходимо остудить. Чаще всего для этого используется антифриз. G – корпус двигателя. H – маслосборник. I – поддон. J – свеча зажигания. Обеспечивает искру, необходимую для того, чтобы зажечь топливную смесь, находящуюся под давлением. K – впускной клапан. Открывается и запускает в камеру сгорания воздушно-топливную смесь. L – отверстие для впуска топливной смеси. M – сам поршень. Движется вверх-вниз в результате детонации топливной смеси, передавая механическую нагрузку на коленчатый вал. O – шатун. Соединительный элемент поршня и коленчатого вала. P – коленвал. Вращается в результате движения поршней. Передает усилия на колеса через трансмиссию автомобиля. Все эти элементы принимают участие в четырехтактном цикле.

Виды двигателей

Первый полноценный прототип двигателя внутреннего сгорания был сконструирован в далёком 1806 году, который принадлежал братьям Ньепсье. После этого важного исторического факта было недолгое затишье.

Но, в конце 19 века три легендарным немца положили старт автомобилестроению — Николас Отто, Готлиб Даймлер и Вильгельм Майбах. После этого двигатели внутреннего сгорания получили много модификаций и вариантов, которые используются по сегодняшний день.

Рассмотрим, какие существуют виды автомобильных ДВС, а также укажем типы двигателей:

  • Паровая машина
  • Бензиновый двигатель
  • Карбюраторная система впрыска
  • Инжектор
  • Дизельные двигатели
  • Газовый двигатель
  • Электрические моторы
  • Роторно-поршневые ДВС

Роторно-поршневые ДВС

Роторно-поршневой силовой агрегат в автомобилестроении не нашёл широкого распространения, хотя можно встретить модели автомобилей, которые используют такой тип ДВС. Предложил создание такого мотора — конструктор Ванкель.

Движение осуществляется за счёт вращения трёхзубчатого ротора, который позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. Данный мотор активно использовался в 80-е годы 20 ст.

Газовый двигатель

Газовые двигатели на сегодняшний день в автоиндустрии в чистом виде почти не используются, поскольку частые поломки моторов, стали причиной полного отказа от них. Вместо этого, газовые установки зачастую можно встретить на бензиновых автомобилях, что значительно экономит расход денег на горючее.

Газ с баллона подаётся на редуктор, который распределяет топливо по цилиндрам, а затем горючее попадает непосредственно в камеры сгорания. После этого с помощью свечей зажигания газ воспламеняется. Единственным недостатком использования газовой установки считается то, что мотор теряет 20% своего потенциального ресурса.

Электрические моторы

Николас Тесла впервые предложил использовать для автомобилей электроэнергию. Электрические моторы на сегодняшний день не распространены, поскольку заряда батареи хватает только до 200 км пути, а заправочных станций, которые могут предоставить услугу зарядки автомобиля — практически нет.

Известная мировая компания, производитель электрических автомобилей «Тесла» продолжает совершенствовать электродвигатели, и каждый год дарит потребителям новинки, которые имеют больший запас хода без дозарядки.

Инжектор

Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.

С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.

Дизельные двигатели

Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.

На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.

Характеристики двигателей

При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.

Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.

Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.

Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.

Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.

Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.

Преимущества и недостатки ДВС

  1. Если говорить о преимуществах двигателей внутреннего сгорания, то на первое место выйдет удобство для пользователя. За столетие бензиновой эпохи мы обросли сетью АЗС и даже не сомневаемся, что всегда будет возможность заправить машину и ехать дальше. Есть риск не встретить заправочную станцию – не беда, можно взять с собой бензин в канистрах. Именно инфраструктура делает использование ДВС таким комфортным.
  2. С другой стороны, заправка двигателя топливом занимает пару минут, проста и доступна. Залил бак – и едь себе дальше. Это не идет ни в какое сравнение с подзарядкой электромобиля.
  3. Способность служить долго при грамотном обслуживании – то, чем могут похвастаться знаменитые двигатели-миллионники. Регулярное своевременное ТО способно сохранить работоспособность мотора на очень долгий срок.
  4. И, конечно, не будем забывать про милый сердцу рев мощного мотора. Настоящий, честный, совершенно не похожий на озвучку современных электрокаров. Не зря же некоторые автоконцерны специально настраивали звук двигателей своих машин.

Какой же основной недостаток у ДВС?

  1. Конечно, это низкий КПД — в пределах 20-25%. Самый высокий на сегодняшний день показатель КПД среди ДВС – 38%, который выдал двигатель Toyota VVT-iE. По сравнению с этим электромоторы смотрятся гораздо выигрышней, особенно с системами рекуперативного торможения.
  2. Второй значительный минус – это общая сложность всей системы. Современные двигатели давно перестали быть такими «простачками», как описывается в схеме классического ДВС. Наоборот, требования к моторам становятся всё выше, сами моторы – более точными и сложными, появляются новые технологии и инженерные решения. Всё это дополнительно усложняет конструкцию двигателя, и чем она сложней, тем больше в ней слабых мест.

Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.

И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».

Неполадки двигателя

Итак, одним прекрасным утром Вы садитесь в машину, а двигатель не заводится… Что же случилось? Теперь, когда Вы знакомы с принципом работы двигателя, Вы сможете разобраться с основными проблемами, которые мешают запуску двигателя. Три наиболее частые неполадки: плохая топливная смесь, недостаточная компрессия, отсутствие искры. Помимо вышеперечисленных, могут возникнуть тысячи других проблем, но мы остановимся на «большой тройке». Основываясь на простом двигателе, который мы описывали, мы расскажем о том, как эти проблемы могут повлиять на Ваш двигатель:

Плохая топливная смесь — Данная проблема может возникнуть по нескольким причинам:

  • У Вас закончился бензин, поэтому в двигатель поступает только воздух без топлива.
  • У Вас забилось впускное отверстие воздуха, поэтому поступает только топливо.
  • Топливная система подает слишком много или мало топлива, в результате чего сгорание не происходит надлежащим образом.
  • Возможно, в топливе присутствуют примеси (например, в бензобак попала вода), которые препятствуют сгоранию.

Недостаточная компрессия — Если топливно-воздушная смесь не будет сжата надлежащим образом, процесс сгорания будет проходить неправильно. Недостаточная компрессия может быть вызвана рядом причин:

  • Износ поршневых колец (топливно-воздушная смесь вытекает за пределы поршня в процессе сжатия).
  • Недостаточное уплотнение клапана впуска или выпуска, что опять же вызывает протечку.
  • В цилиндре имеются повреждения.

Наиболее часто повреждение цилиндра происходит в его верхней части (на которой установлены клапаны, свеча зажигания и которая называется головка цилиндра) крепится к самому цилиндру. Обычно головка цилиндра крепится к самому цилиндру при помощи болтового соединения с использованием тонкой прокладки, которая обеспечивает качественное уплотнение.. При повреждении прокладки, между цилиндром и его головкой образуются небольшие отверстия, в результате чего происходят протечки.

Регулярное техническое обслуживание может помочь избежать ремонта

Отсутствие искры — Искра может быть слишком слабой или отсутствовать вообще по следующим причинам:

  • При износе свечи зажигания или ее провода может наблюдаться слабая искра.
  • При повреждении или обрыве провода или система, передающая искру, не функционирует надлежащим образом, искра может отсутствовать.
  • Если искра подается слишком рано или поздно во время цикла (т.е. если регулировка зажигания отключена), воспламенение топлива не произойдет в нужный момент, что может повлечь к различным проблемам.

Могут возникнуть и другие неполадки. Например:

  • Если аккумулятор разряжен, Вы также не сможете завести двигатель.
  • Если подшипники, которые обеспечивают свободное вращение коленвала, изношены, коленвал не сможет вращаться, в результате чего двигатель не заведется.
  • Если открытие/закрытие клапанов не происходит в нужный момент и не происходит вообще, воздух не сможет поступать и выходить, что будет препятствовать работе двигателя.
  • Если кто-то засунет картофелину Вам в выхлопную трубу, выхлоп не будет выпущен из цилиндра, поэтому двигатель не заведется.
  • Если у Вас закончилось масло, поршень не сможет свободно двигаться в цилиндре, в результате чего двигатель заклинит.
  • В исправно работающем двигателе все эти факторы находятся в допустимых пределах.

Как Вы видите, в двигателе имеется несколько систем, которые обеспечивают преобразование энергии топлива в механическую энергию. В следующих разделах мы рассмотрим различные подсистемы, которые используются в двигателях.

Клапанный механизм и система зажигания двигателя

Большинство подсистем двигателя может быть установлено с использованием различных технологий, а новые технологии могут улучшить показатели двигателя. Далее мы рассмотрим различные подсистемы, которые используются в современных двигателях, начиная с клапанного механизма.

Клапанный механизм состоит из клапанов и механизма, который открывает и закрывает их. Открывающая и закрывающая система называется распредвал. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз ,как показано на Рисунке 5.

Рисунок 5. Распредвал

В большинстве современных автомобилей используются так называемые верхнерасположенные распредвалы. Распредвал имеет кулачки, которые перемещают клапаны вверх-вниз, как показано на Рисунке 5. Кулачки воздействуют на клапаны напрямую или посредством очень короткой тяги. В старых моделях двигателей распредвал расположен в картере рядом с коленвалом. Штифты соединяют нижнюю часть кулачков с толкателями клапанов, расположенными над клапанами. В таком устройстве имеется больше движущихся частей, в результате чего возникает отставание между временем активации кулачка и последующим перемещением клапана.

Ремень ГРМ или цепь ГРМ соединяет коленвал с распредвалом таким образом, чтобы клапаны двигались синхронно с поршнями. Скорость вращения распредвала в два раза ниже, чем у коленвала. Во многих мощных двигателях на каждый цилиндр установлено по четыре клапана (два впускных и два выпускных), такая конструкция требует наличия двух распредвалов на блок цилиндров, отсюда и название «двухраспредвальный вид головки». Для получения более подробной информации читайте статью «Как работает распредвал».

Система зажигания (Рисунок 6) генерирует электрический разряд высокого напряжения и передает его от свечи зажигания по проводам зажигания. Вначале заряд поступает на распределитель, который Вы легко можете найти под капотом большинства автомобилей. Распределитель имеет один провод, входящий в центре и четыре, шесть или восемь проводов (в зависимости от количества цилиндров), выходящие их него. Эти провода зажигания передают заряд на каждую свечу зажигания. Зажигание двигателя отрегулировано таким образом, что за один раз искру от распределителя получает только один цилиндр. Такая конструкция обеспечивает максимальную равномерность работы. Для получения более подробной информации читайте статью «Как работает автомобильная система зажигания».


Рисунок 6. Система зажигания

В следующем разделе мы рассмотрим, как происходит запуск, охлаждение и циркуляция воздуха в двигателе.

Системы охлаждения, воздухозабора и запуска двигателя

В большинстве автомобилей система охлаждения состоит из радиатора и водяного насоса. Охлаждающая жидкость циркулирует по охлаждающей рубашке цилиндров, затем попадает в радиатор для охлаждения. В некоторых автомобилях (преимущественно в Volkswagen Жук) и в большинстве мотоциклов и газонокосилок используется воздушное охлаждение двигателей (двигатель с воздушным охлаждением легко узнать по ребрам на внешней стороне цилиндров, которые рассевают тепло). Двигатели с воздушным охлаждением намного легче, но охлаждаются хуже, что снижает их срок эксплуатации и производительность. Для получения более подробной информации читайте статью «Как работает система охлаждения».

На схеме представлено соединение патрубков системы охлаждения

Итак, теперь Вы знаете, что и как охлаждает двигатель Вашего автомобиля. Но почему так важна циркуляция воздуха? Большинство двигателей является безнаддувными, т.е. воздух поступает через воздушные фильтры непосредственно в цилиндры. Более мощные двигатели либо имеют турбонаддув, либо наддув, т.е. воздух поступает в двигатель под давлением (для подачи в цилиндр большего объема топливно-воздушной смечи) для увеличения мощности двигателя. Уровень сжатия воздуха называется наддув. При турбонаддуве используется небольшая турбина, установленная на выхлопную трубу для вращения нагнетающей турбины входящим потоком воздуха. Турбокомпрессор устанавливается непосредственно на двигатель для вращения компрессора.

Увеличение мощности двигателя — это, конечно, хорошо, но что же происходит когда Вы поворачиваете ключ? Система запуска состоит из электростартера и соленоида стартера. При повороте ключа зажигания, стартер несколько раз проворачивает двигатель для начала процесса сгорания. Для запуска холодного двигателя требуется мощный стартер. Стартер должен преодолеть:

  • Любое собственное трение, вызванное поршневыми кольцами
  • Давление сжатия любого из цилиндров во время такта сжатия
  • Энергию, необходимую для открытия и закрытия клапанов распредвалом
  • А также действие всех остальных деталей, установленных непосредственно на двигателе, например водяного насоса, масляного насоса, генератора и т.д.

В связи с тем, что требуется большое количество энергии и в автомобилях используется 12-вольтная электросистема, на стартер должен поступать ток в несколько сотен ампер. Соленоид стартера — это большой электронный переключатель, который может выдержать ток такой силы. При повороте ключа зажигания, он запускает соленоид для подачи питания на стартер.

В следующем разделе мы расскажем о подсистемах двигателя, которые отвечают за то, что в него поступает (масло и топливо) и что выходит (выхлоп и выбросы).

Системы смазки, подачи топлива, выхлопа и электросистема двигателя
Когда дело касается повседневного обслуживания, скорее всего Вас, прежде всего, заинтересует количество бензина в бензобаке Вашего автомобиля. Каким же образом бензин, которым Вы заправляетесь, заставляет работать цилиндры? Топливная система при помощи насоса подает топливо из бензобака и смешивает его с воздухом в определенных пропорциях для того, чтобы топливно-воздушная смесь затем поступала в цилиндры. Существует три способа подачи топлива: карбюрация, впрыск во впускные каналы и непосредственный впрыск.

  • При карбюрации устройство, которое называется карбюратор, смешивает бензин с воздухом при подаче воздуха в двигатель.
  • В двигателях с впрыском топлива необходимое количество топлива впрыскивается в каждый цилиндр отдельно либо над впускным клапаном (впрыск во впускные каналы), либо в сам цилиндр (непосредственный впрыск).

Для получения более подробной информации читайте статью «Как работает система впрыска топлива».

Масло также играет очень важную роль. Система смазки обеспечивает подачу масла для каждой движущейся детали для того, чтобы они свободно двигались. Прежде всего, смазка требуется поршням (для их плавного движения в цилиндрах) и подшипникам, которые обеспечивают вращение таких деталей, как коленвал и распредвал. В большинстве автомобилей масла из поддона картера подается при помощи масляного насоса, проходит через масляный фильтр для удаления абразивных частиц, после чего под давлением поступает на подшипники и стенки цилиндра. Затем масло стекает обратно в картер, где оно собирается, после чего цикл повторяется.

Выбери какой вид двигателя изображен на картинке двигатель внутреннего сгорания паровая турбина

Одним из самых распространённых видов теплового двигателя, который мы встречаем в жизни, является двигатель внутреннего сгорания (ДВС). Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Легко догадаться, что отсюда и пошло его название.

На данном уроке мы рассмотрим устройство двигателя внутреннего сгорания и схему его работы.

Устройство двигателя внутреннего сгорания

Тепловые двигатели такого типа работают на жидком и газообразном топливе. Этим топливом могут быть нефть, бензин, керосин, различные горючие газы.

На рисунке 1 изображена схема простейшего двигателя внутреннего сгорания в разрезе.

Двигатель представляет собой прочный металлический цилиндр. Внутри этого цилиндра имеется подвижный поршень 3. Поршень соединения шатуном 4 с коленчатым валом 5.

В верхней части двигателя расположены два клапана 1 и 2. Когда двигатель работает, они автоматически открываются и закрываются в определенные нужные моменты.

Через клапан 1 в цилиндр двигателя поступает горючая смесь. Она воспламеняется с помощью свечи 6.

Горючая смесь — это смесь горючих газов, частиц жидкого топлива и паров топлива с воздухом (кислородом).

Отработавшие газы выпускаются через клапан 2.

Периодически в цилиндре происходит сгорание горючей смеси. Например, сгорает смесь паров бензина и воздуха. Образуются газообразные продукты сгорания. Их температура при этом достигает высоких значений — $1600-1800 \degree C$. В результате этого резко увеличивается давление на поршень.

Эти газы (продукты сгорания) толкают поршень. При движении поршня двигается и коленчатый вал. Таким образом газы совершают механическую работу. Т. е., часть внутренней энергии газов перешла в механическую энергию. Следовательно, внутренняя энергия газов уменьшилась — они начинают охлаждаться.

Мертвые точки, ход поршня и такты двигателя

Для того чтобы более подробно рассмотреть схему работы данного двигателя, нам понадобятся новые определения.

Поршень может двигаться внутри цилиндра. В устройстве самого простого вида, который мы рассматриваем, он может двигаться вверх и вниз.

Мёртвые точки — это крайние точки положения поршня в цилиндре.

Ход поршня — это расстояние, которое проходит поршень от одной мертвой точки до другой.

Рассматриваемые нами двигатели внутреннего сгорания называют четырехтактными.

Четырехтактный двигатель — это двигатель, в котором один рабочий цикл происходит за четыре хода поршня (за четыре такта).

Один такой такт двигателя или ход поршня происходит за половину оборота коленчатого вала.

Схема работы двигателя внутреннего сгорания: четыре такта

Теперь давайте подробно рассмотрим все четыре такта работы двигателя (рисунок 2).

Рисунок 2. Схематическое изображение работы двигателя внутреннего сгорания

Первый такт (рисунок 2, а):

  • При повороте коленчатого вала в самом начале такта поршень начинает двигаться вниз
  • Объем над поршнем увеличивается
  • В цилиндре образуется разрежение
  • Открывается клапан 1. В цилиндр поступает горючая смесь
  • Цилиндр заполняется горючей смесью. Клапан 1 закрывается

Второй такт (рисунок 2, б):

  • Вал продолжает поворачиваться, поршень теперь двигается вверх
  • Таким образом поршень сжимает горючую смесь
  • Поршень доходит до верхней мертвой точки
  • Сжатая горючая смесь воспламеняется от электрической искры (свеча 6) и сгорает

Третий такт (рисунок 2, в):

  • При сгорания смеси образуются газы. Они давят на поршень — толкают его вниз
  • Под действием этих расширяющихся нагретых газов двигатель совершает работу. Поэтому,

Третий такт двигателя — это рабочий ход.

  • Поршень двигается вниз. Его движение передается шатуну и коленчатому валу
  • Получив сильный толчок, коленчатый вал с маховиком продолжают вращение по инерции. При этом они приводят в движение поршень при последующих тактах

Заметьте, что на втором и третьем тактах двигателя клапаны закрыты.

  • В конце такта открывается клапан 2. Продукты сгорания начинают выходить из цилиндра в окружающую среду

Четвертый такт (рисунок 2, г):

  • Идет выход продуктов сгорания из цилиндра (клапан 2 открыт)
  • Поршень движется вверх
  • В конце этого такта клапан 2 закрывается

Цикл двигателя состоит из четырех тактов:
впуск
сжатие
рабочий ход
выпуск

Рисунок 3. Рудольф Кристиан Карл Дизель (1858 — 1913)

В 1893 году он получил патент на свой тепловой двигатель. В 1897 году, на «Аугсбургском машиностроительном заводе» был построен первый двигатель Рудольфа Дизеля . Его мощность составляла 20 лошадиных сил при 172 оборотах в минуту. Весил этот двигатель пять тонн. Двигатель Дизеля был четырехтактным.

В 1900 году, на «Всемирной выставке», Рудольф Дизель продемонстрировал двигатель работающий на арахисовом масле (биодизель).

Двигатели внутреннего сгорания имеют очень широкое применение. В ходе их усовершенствования, в мире появлялись новые средства передвижения. Например, автомобили, мотоциклы, самолеты, вертолеты, космические корабли, ракеты, суда на воздушной подушке.

В автомобилях чаще всего стоят четырехцилиндровые двигатели внутреннего сгорания. В каждом цилиндре по очереди происходит рабочий ход. Поэтому коленчатый вал постоянно получает энергию от одного из поршней.

Существуют и двигатели с другим количеством цилиндров. Многоцилиндровые двигатели лучше обеспечивают равномерность вращения вала и имеют большую мощность.

Огнестрельное оружие является простейшим примером ДВС. Цилиндром является ствол оружия, а поршнем — выбрасываемые из оружия пули или снаряды.

Использование ДВС обеспечило быстрый прогресс в военной индустрии: были разработаны танки, истребители, подводные лодки.

В настоящее время двигатели внутреннего сгорания установлены практически на каждом виде транспорта, которым мы пользуемся. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *