БОРТОВАЯ СИСТЕМА ДИАГНОСТИКИ OBD II: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ (часть первая).
Честно стырено из интернета. Довольно занятная статья. Лично я для себя много нового узнал. надеюсь вам будет интересно — Много букв!
БОРТОВАЯ СИСТЕМА ДИАГНОСТИКИ OBD II: ПРОШЛОЕ, НАСТОЯЩЕЕ, БУДУЩЕЕ.
Адаптировано из статьи Ларри Карли для журнала «Underhood Service».
Эта технология сравнительно молодая и еще не получила широкого распространения на рынке запчастей, но это лишь вопрос времени. Речь идет о системе OBD II — санкционированной государством бортовой системе диагностики для контроля качества выхлопа. Все легковые и легкие грузовые автомобили с 1996 года выпуска оборудованы этой системой, хотя впервые она стала использоваться в 1994 году лишь на некоторых моделях.
OBDII отличается от всех остальных систем самодиагностики тем, что предназначена исключительно для проверки качества выхлопа.
Другими словами, она зажигает индикатор неисправности MIL, как только количество углеводорода (HC), оксида углерода (CO), оксидов азота (NOX) или паров топлива в отработавших газах превышает в 1,5 раза федеральные стандарты токсичности автомобилей. Это может быть следствием ряда причин: повышение концентрации углеводорода в выхлопе из-за случайных пропусков зажигания; падение кпд каталитического нейтрализатора ниже определенного порога; попадание воздуха в герметичную топливную систему; повышение концентрации в выхлопе оксидов азота из-за ошибки в системе рециркуляции отработавших газов; неисправность важного датчика или другого устройства для снижения токсичности выхлопа.
То есть индикатор неисправности может загораться даже тогда, когда автомобиль на первый взгляд работает нормально и нет проблем с управляемостью.
Индикатор неисправности MIL в автомобилях, оборудованных системой OBD II, предназначен для того, чтобы предупреждать автомобилистов о повышении токсичности отработавших газов и дать им возможность решить эту проблему. Однако мы все хорошо знаем, что большинство автолюбителей отлично умеют игнорировать предупредительные сигналы, даже если из-под капота дым столбом и двигатель издает страшные звуки. Вот поэтому планируется включить систему OBD II во все существующие программы контроля выхлопных газов. Если индикатор MIL горит во время тестирования, значит, автомобиль не выдерживает проверку, даже если токсичность выхлопа в пределах нормы.
Проблема большинства программ инспекции транспортных средств в том, что они были разработаны в далеких 1980-ых для выявления сильных источников загрязнения окружающей среды. Такое тесты были введены главным образом для измерения токсичности карбюраторных двигателей на холостом ходу (они являются самыми токсичными на холостом ходу) и проверяли на наличие только двух загрязняющих веществ – несгоревших углеводородов (HC) и оксида углерода (CO). Значения максимально допустимых концентраций вредных веществ, установленные для различных моделей, были довольно высокими, поэтому большинство автомобилей выдерживало проверку.
Если и были попытки повысить уровень инспекции до нового стандарта I/M 240, то отсутствие народной и политической поддержки мешало реализовать эту идею. Стандарт I/M 240 требует проведодить проверку состава отработавших газов в режиме нагрузки с помощью динамометра, во время езды на разных скоростях и по заранее спланированному маршруту. В таком случае выхлопные газы проверяются не только на общую концентрацию углеводорода (HC) и оксида углерода (CO) (в граммах, а не в процентах), но также и на содержание оксидов азота (NOX). По общему количеству выбросов за ездовой цикл, длящийся 240 секунд, вычисляется средний суммарный балл, который и определяет, прошел автомобиль проверку или нет. В тестирование также включены: проверка интенсивности выделения паров топлива для измерения скорости потока паров топлива через клапан продувки фильтра и проверка давлением системы улавливания паров топлива при выключенном двигателе для выявления утечек в топливном баке, топливопроводе или топливной крышке.
Изначально программа контроля I/M 240 была предназначена для тех районов страны (США), которые не отвечают национальному стандарту качества окружающего воздуха. Однако после того, как программа провалилась в штате Мэн, многие штаты от нее отказались. Из-за своей дороговизны и сложности, а также отсутствия поддержки общественности, программа I/M 240 была обречена на неудачу с самого начала. Поэтому в большинстве штатов сейчас используется простая диагностика OBD II для проверки легковых и грузовых автомобилей с 1996 года выпуска на соблюдение норм токсичности отработавших газов.
КОРОТКАЯ ИСТОРИЯ С ДАЛЕКО ИДУЩИМИ ПОСЛЕДСТВИЯМИ
История создания OBDII берет начало в 1982 году в Калифорнии, когда Калифорнийский совет по ресурсам атмосферы начал разрабатывать нормативы, согласно которым все автомобили, проданные в этом штате начиная с 1988 года, должны быть оборудованы бортовой системой диагностики для обнаружения неисправностей. Первая бортовая система диагностики (которая стала известна как OBDI) была относительно простой и контролировала только кислородный датчик, систему рециркуляции отработавших газов, топливную систему и блок управления.
Создание OBD I было шагом в верном направлении, но ей не хватало требований к стандартизации для различных марок и моделей. Для разных моделей требовались разные адаптеры, а с некоторыми системами можно было работать только с помощью дорогостоящих дилерских сканеров. Поэтому, когда Калифорнийский совет по ресурсам атмосферы начал разрабатывать стандарты для системы OBD II, приоритетной задачей была стандартизация: стандартный 16-контактный диагностический разъем (DLC), в котором у каждого контакта свое назначение, стандартные электронные протоколы, стандартные диагностические коды неисправностей и стандартная терминология.
Еще один недостаток системы OBD I был в том, что она не могла обнаружить определенные проблемы, например, неисправность каталитического нейтрализатора или его отсутствие, а также пропуски воспламенения или проблемы с выделением паров топлива. Более того, индикатор неисправности загорался только после того, как ошибка уже произошла, но не было возможности регистрировать процесс ухудшения состояния компонентов выхлопной системы. Таким образом, появилась необходимость создать более сложную, усовершенствованную систему.
Со временем Калифорнийский совет по ресурсам атмосферы разработал стандарты для бортовой системы диагностики следующего поколения, которая вошла в употребление в 1989 году и стала известна как OBD II. Поэтапное внедрение новых стандартов началось в 1994 году, и к 1996 году все модели, выпущенные в Калифорнии, были оборудованы системой OBD II.
Аналогичные стандарты были введены федеральным Законом о чистом воздухе от 1990 года, согласно которому транспортные средства всех 49 штатов должны были быть оборудованы системой OBD II к 1996 году. Однако в законе была оговорка: система OBD II должна быть полнофункциональной только после 1999 года. Поэтому в некоторых системах OBD II 1996 года не поддерживается возможность тестирования системы выделения топливных паров.
ПЕРВЫЕ МОДЕЛИ, ОБОРУДОВАННЫЕ СИСТЕМОЙ OBD II
Модели 1994 года, оборудованные системой OBD II: Buick Regal 3800 V6, Corvette, Lexus ES3000, Toyota Camry (1MZ-FE 3.0L V6) и пикап T100 (3RZ-FE 2.7L 4), Ford Thunderbird & Cougar 4.6L V8, и Mustang 3.8L V6.
Модели 1995 года, оборудованные системой OBD II: Chevy/GMC S, пикапы серии T, Blazer и Jimmy 4.3L V6, Ford Contour & Mercury Mystique 2.0L 4 & 2.6L V6, Chrysler Neon, Cirrus и Dodge Stratus, Eagle Talon 2.0L DOHC (без турбонаддува), и Nissan Maxima и 240 SX.
В вышеперечисленных моделях не обязательно используются все функции системы OBD II, но поддерживаются основные диагностические возможности.
ОБНОВЛЕНИЕ АППАРАТНОГО ОБЕСПЕЧЕНИЯ ДЛЯ СИСТЕМЫ OBD II
Не думайте, что OBD II – это только более продвинутая версия программ самодиагностики. Она подразумевает гораздо больше.
Обычно автомобили, поддерживающие систему OBD II, имеют:
• В два раза больше кислородных датчиков, чем в автомобилях без поддержки OBD II (большинство из которых – кислородные датчики с подогревом). На выходе каталитического нейтрализатора есть дополнительные кислородные датчики.
• Более мощный Блок Управления Трансмиссией с 16-разрядными (Chrysler) или 32-разрядными (Ford & GM) процессорами для обработки более 15000 новых калибровочных констант, добавленных OBD II.
• Электронно-стираемое программируемое постоянное запоминающее устройство (ЭСППЗУ) микросхемы, позволяющие перепрограммировать ЭБУ согласно с исправленным или обновлённым ПО посредством канала передачи данных или внешнего компьютера.
• Модифицированная система улавливания паров топлива (EVAP) с возможностью проверки системы очистки или усовершенствованная система EVAP с электромагнитным клапаном вентиляции, датчиком давления в топливном баке и соединительные устройства,
• Линейный клапан рециркуляции отработавших газов с электронным управлением, датчик положения плунжера.
• Последовательный впрыск топлива вместо многоточечного или центрального впрыска.
• датчик абсолютного давления в коллекторе для контроля нагрузки на двигатель и датчик расхода воздуха для контроля воздушного потока
АВТОСКАНЕРЫ ДЛЯ OBD II
Для работы с автомобилем, оборудованным OBD II необходимо иметь автосканер, совместимый с этой системой. Многие сканеры, которые были изготовлены до 1996 года, не подходят для работы с OBD II и смена картриджа тут не поможет. Вам понадобится аппаратный адаптер для старого сканера или новый сканер, совместимый с OBD II.
На дилерских сервисных станциях корпорации GM для диагностики автомобилей с 1996 года выпуска этой марки используется сканер Tech 2. Функции сканера Tech 2: вывод до 9-ти текущих параметров системы одновременно, вывод стоп-кадров для 5-ти параметров, отображение гистограмм и линейных графиков, захват текущих данных и способность хранить 2 стоп-кадра данных. Подобным образом, для диагностики автомобилей Chrysler используется сканер DRB III, а для моделей Ford с 1996 года выпуска – Дилерский системный сканер Ford VCM
Если вам нужен хороший справочник по системе OBD II, есть отличное учебное пособие от GM «Бортовая система диагностики второго поколения», P/N 16030.02-1. Книга стоит $20, распространяется маркетинговым отделом компании MascoTech (адрес компании: Оберн-Хиллс, штат Мичиган, 1972 Brown Road, 48326 (1-800-393-4831)).
ЭТОТ ПРОТИВНЫЙ ИНДИКАТОР MIL
Все знакомы с индикаторной лампой неисправности "Check Engine", или ее более поздним аналогом "Malfunction Indicator Lamp" (MIL) в автомобилях, оборудованных системой OBD II. Часто кажется, что индикатор MIL живет своей жизнью.
Работники нескольких автопарков компании General Motors столкнулись с проблемой: в автомобилях GM с 1996 года выпуска с платформами J-, N- и H-body индикатор MIL загорался из-за того, что автомобилисты и работники автопарка использовали неправильную процедуру дозаправки топливного бака. В системе улавливания паров топлива этих моделей OBD II использует вакуум для обнаружения утечек воздуха. Если крышка топливного бака сидит неплотно, а также, если во время включения зажигания или холостого хода бензобак заполнен, может возникнуть ложный код ошибки P0440, вследствие чего загорится лампа MIL. Специалисты компании GM советуют дилерам и клиентам перепрошить ЭСППЗУ и с помощью обновленной версии во время езды проверить систему улавливания топливных паров.
Причиной ложных сигналов также может оказаться некачественное топливо. В таком случае генерируется код P0300, означающий случайные пропуски зажигания из-за обедненной топливной смеси, причиной чего может быть утечка вакуума, низкое топливное давление, засоренные форсунки и т.д., а также из-за таких проблем в системе зажигания, как грязные свечи зажигания, плохая проводка, слабая катушка и т.п. Система самодиагностики OBD II отслеживает пропуски зажигания в отдельных цилиндрах, при этом интенсивность пропусков не более 2 % считается нормой. Попадание воды в топливо или различные комплексы присадок в топливе улучшенного состава могут увеличить количество пропусков зажигания и сгенерировать код ошибки.
Для сведения к минимуму ложных сигналов система OBD II запрограммирована таким образом, чтобы индикатор MIL загорался только при повторном возникновении неисправности в определенных условиях. В случае других неисправностей (которые обычно приводят к резкому и значительному повышению токсичности выбросов) индикатор MIL загорается сразу (то есть при первом же возникновении ошибки). Поэтому для корректной диагностики необходимо знать, с каким типом кодов вы имеете дело.
Диагностические коды неисправностей типа А – самые опасные. При возникновении такого рода неисправности сразу же загорается индикатор MIL, и система OBD II сохраняет в памяти предысторию неисправности, запись и стоп-кадры данных о неисправности.
Коды неисправностей типа В говорят о менее серьезных проблемах выхлопной системы, в этом случае лампа MIL включается при обнаружении неисправности в двух поездках подряд, но если ошибка случается только один раз, код не генерируется. Если это все-таки случается и загорается индикатор MIL, то предыстория неисправности, запись и стоп-кадры данных о неисправности сохраняются там же, где и коды типа А.
Между прочим, ездовой цикл, помимо включения-выключения зажигания, включает в себя еще и цикл нагрева двигателя. Это значит, что для совершения ездового цикла надо запустить двигатель и «гонять» двигатель до тех пор, пока температура охлаждающей жидкости не поднимется до 40° по Фаренгейту (если температура при запуске двигателя меньше 160° по Фаренгейту)
При кодах типа А или В индикатор MIL горит до тех пор, пока неисправный элемент не пройдет самотестирование в течение трех ездовых циклов. А если дело в случайных пропусках зажигания (код P0300) или проблема с топливным балансом, то индикатор не погаснет до тех пор, пока система не пройдет самотестирование в тех же рабочих условиях, при которых появилась неисправность (не более 375 об/мин и 10 %-ной нагрузки). Даже если стереть код ошибки с помощью сканера или отключить питание блока управления, индикатор MIL все равно будет продолжать загораться, пока проблема не будет устранена окончательно.
Аналогично, если преднамеренно отсоединить датчик, индикатор MIL не обязательно будет загораться – это зависит от приоритетности датчика (как он влияет на качество выхлопа) и от того, сколько ездовых циклов понадобится для того, чтобы система OBD II обнаружила ошибку и сгенерировала соответствующий код.
Коды типов C и D не относятся к выхлопной системе. При возникновении кодов типа C индикатор MIL (или другая предупредительная сигнальная лампа) может загореться, но при кодах типа D – нет.
ЕЗДОВОЙ ЦИКЛ OBD II
Предположим, все проблемы выхлопной системы автомобиля устранены. Проверить исправность работы автомобиля можно, совершив ездовой цикл.
Цель ездового цикла OBD II – выполнить условия, необходимые для запуска бортовой диагностики. Ездовые циклы должны выполняться после того, как из памяти блока управления стерты все коды ошибок или отключена батарея. В процессе ездового цикла активируются все системные мониторы, позволяющие выявлять последующие неисправности.
Ездовой цикл OBD II начинается с запуска двигателя из холодного состояния (температура охлаждающей жидкости меньше 122° по Фаренгейту, разница температур охлаждающей жидкости и воздуха – не более 11 градусов)
ПРИМЕЧАНИЕ: ключ зажигания лучше поворачивать после холодного запуска двигателя, иначе кислородный датчик с подогревом может не заработать.
1. После холодного запуска подержите двигатель его на холостых оборотах 2,5 минуты с включенным кондиционером и обогревом заднего стекла. В это время система OBD II проверяет цепи подогревателя кислородного датчика, воздушный насос и систему улавливания паров топлива.
2. Выключите кондиционер и обогрев заднего стекла; разгоните автомобиль до 55 миль в час при полуоткрытой дроссельной заслонке. OBD II проверяет систему зажигания, регулирование состава горючей смеси и продувку угольного фильтра.
3. Держите скорость 55 миль в час в течение трех минут. OBD II проверяет систему рециркуляции отработавших газов, воздушный насос, кислородные датчики и продувку угольного фильтра.
4. Сбросьте скорость (в режиме свободного выбега) до 20 миль в час, не давя на тормоз и не выжимая сцепление. OBD II проверяет систему рециркуляции отработавших газов и продувку угольного фильтра.
5. Вновь разгоните автомобиль до 55 – 60 миль в час при полуоткрытой дроссельной заслонке. OBD II снова проверяет систему зажигания, регулирование состава горючей смеси и продувку угольного фильтра.
6. Держите скорость 55 – 60 миль в час в течение пяти минут. OBD II проверяет кпд каталитического нейтрализатора, систему зажигания, регулирование состава горючей смеси, систему рециркуляции отработавших газов, кислородные датчики и продувку угольного фильтра.
7. Сбросьте скорость (в режиме свободного выбега) до 20 миль в час, не давя на тормоз. OBD II осуществляет окончательную проверку системы рециркуляции отработавших газов и продувки угольного фильтра.
OBD: ПРОГНОЗ НА БУДУЩЕЕ
OBD II – очень сложная и действенная система диагностики проблем выхлопной системы. Однако, когда возникает необходимость решать эти проблемы, в руках автолюбителя эта система становится не более эффективной, чем OBD I. Ведь большинство из нас так и не потрудятся в ней разобраться, если только не ввести какие-нибудь обязательные правила, например, всегда проверять индикатор MIL во время проверки на токсичность отработавших газов.
В настоящее время планируется разработать систему OBD III – более усовершенствованную версию OBD II благодаря применению телеметрии. При помощи миниатюрного ретранслятора, аналогичного тому, что используется в системе автоматического сбора пошлины, система OBD III сможет сообщать о неисправностях напрямую в соответствующий контрольный орган. Ретранслятор будет передавать идентификационный номер автомобиля (VIN-код) и диагностический код ошибки. Система может быть настроена на то, чтобы автоматически сообщать о проблемах выхлопной системы через сотовую или спутниковую линию связи в тот момент, когда загорается индикатор MIL, или отвечать на сотовый, спутниковый или придорожный сигнал запроса о текущем состоянии выхлопной системы.
Чем этот подход так привлекателен для регулирующих органов, так это своей эффективностью и экономичностью. С существующей системой все транспортные средства области или штата (США) раз в год или в два должны проходить проверку на токсичность отработанных газов, в результате которой обнаруживается около 30 % автомобилей с проблемами выхлопной системы. С появлением дистанционного контроля автомобилей при помощи бортовой телеметрии исчезнет необходимость периодических осмотров, так как проверяться будут только автомобили, приславшие отчеты о неисправностях. На самом деле, подобная система – OnStar – уже есть в моделях General Motors 2004, 2005 и 2006 года выпуска. OnStar контролирует систему OBD II и информирует водителя об обнаруженных неисправностях. Благодаря заблаговременному выявлению неисправностей корпорация General Motors имеет возможность сэкономить на ремонтных расходах (и прилично сократить затраты на гарантийное обслуживание).
С одной стороны, OBD III с ее телеметрической аппаратурой, сообщающей о неисправностях, избавит потребителей от неудобной и дорогостоящей необходимости планового техосмотра их автомобилей. До тех пор, пока не будет отправлен отчет о неисправности, тестирование проходить не обязательно. С другой стороны, когда обнаружена повышенная токсичность выхлопных газов, автомобилист обязан устранить эту проблему, что и является целью всех программ контроля над загрязнением воздуха. Если сосредоточить внимание на транспортных средствах, которые являются действительно серьезными источниками загрязнения, можно существенно улучшить состояние окружающей среды. Однако сейчас такие источники загрязнения могут избегать проверок и ремонтов в течение двух лет (в тех областях, где плановый техосмотр проводится раз в два года). А в областях, где программы техосмотра вообще не проводятся, и вовсе нет никакой возможности обнаружить такие автомобили. Внедрение системы OBD III изменит эту ситуацию.
Что такое OBD2 разъем и как пользоваться адаптером системы диагностики автомобилей
Понятие интерфейса между объектом, управляемым при помощи компьютеризированного оборудования, и устройством, выполняющим функции контроля и диагностики, подразумевает жёсткую стандартизацию протокола обмена информацией. В случае автомобиля необходимость в этом присутствует, но в единообразии не очень заинтересованы производители.
- 1 История диагностики с OBD II
- 1.1 Что такое EOBD
- 2.1 Где находится
- 2.2 Распиновка разъема ОБД 2
- 3.1 A
- 3.2 B
- 3.3 C
- 3.4 Протокол ISO9141
- 3.5 J1850 VPW
- 4.1 Первый знак
- 4.2 Второй знак
- 4.3 Третий знак
- 4.4 Четвертый и пятый символы
Однако на законодательном уровне всё же удалось создать нечто стандартное, удобное для проверяющих организаций и частных предприятий по диагностике и ремонту. Это интерфейсный диагностический разъём OBD II, которым сейчас снабжены практически все автомобили.
История диагностики с OBD II
Изначально мало кто заботился об удобстве автомобильных диагностов. Микрокомпьютеры, управляющие агрегатами машины, могли быть проверены дилерскими средствами, в свободную продажу не поступающими и открытыми кодами не обеспеченными. Поэтому первый шаг был сделан государственными организациями, призванными следить за экологической чистотой транспорта.
Появился контрольный стандарт в США, где Калифорния всегда славилась, как самый требовательный к ограничению загрязнений окружающей среды двигателями внутреннего сгорания штат.
По теме: Что такое CAN-шина в автомобиле (устройство и схема подключения)
К середине 90х годов описание разъёма окончательно сформировалось в виде OBD II, то есть второго финального варианта исполнения. On-Board Diagnostics II стал обязателен к применению на всех автомобилях в США после 1996 года.
Что такое EOBD
Встречающаяся аббревиатура EOBD особого смысла в понятие OBD не добавляет, и даже нет точной определённости, что значит дополнительная буква в начале.
Это может быть сокращение от European, намёк на дополнительные способности Enhanced или просто бессмысленная приставка Electronic (других просто не существует).
Но чаще склоняются к началу внедрения позитивного американского стандарта в производство европейских автомобилей. Тем более, что рынок США всегда считался самым важным.
В результате параллельно с американскими стандартами на диагностический интерфейс SAE образовались и общемировые ISO.
В большинстве случаев идентичные, но с другими цифробуквенными обозначениями, а чаще применяется тот, который раньше появился. Это относится к протоколам физического и логического уровней.
Основная функция диагностического разъема
Диагностический разъём необходим для возможности организации связи внешнего контрольного компьютера с внутренними вычислительными ресурсами автомобиля. Через него информация визуализируется на мониторах и может быть считана и проанализирована специалистами автосервисов.
Это позволяет своевременно и быстро найти неисправность, тем самым, с точки зрения законодателей, оперативно предотвратить экологическое нарушение, а мастера получили инструмент, с помощью которого постепенно смогли выполнять те же сервисные процедуры, что и официальные дилеры.
Где находится
Расположение разъёма также стандартизировано, расстояние от руля не должно превышать 16 дюймов, более того, указаны совершенно точные места в нескольких вариантах для монтажа разъёма.
Обычно он прикрыт от загрязнений, но точное расположение в конкретном автомобиле и способ доступа хорошо известен ремонтникам.
Распиновка разъема ОБД 2
Очевидно, что назначение всех контактов в подобной системе должно быть чётко прописано. Использован стандартный 16-контактный разъём. а наиболее важные соединения однозначно привязаны к номерам контактов (пинам):
- положительная и отрицательная линии интерфейса типа SAE J1850 разведены на 2 и 10 контакты соответственно;
- аналогично линии High и Low CAN-шины (ISO 15765-4, SAE J2284) задействуют 6 и 14 контакты;
- на свободные контакты может быть выведена и низкоскоростная CAN-шина;
- 7 и 15 контакты используются для интерфейсов K-line и L-line ISO 9141-2 и ISO 14230;
- контакты 4 и 5 отведены под силовое и сигнальное заземление, могут быть просто соединены вместе перемычкой;
- постоянное питание 12 Вольт вне зависимости от включения зажигания подаётся на 16 контакт;
- остальные контакты жёстко не стандартизированы, производители часто используют их на своё усмотрение, например, для подачи напряжения питания после замка зажигания или главного реле, вывода питающего провода бензонасоса или коммутации цепей иммобилайзера.
Использование тех или иных контактов можно определить визуально, обычно если цепь не применяется, то пин в гнезде отсутствует полностью.
Классификация протоколов
Привести всё к единому протоколу обмена не удалось, поскольку система разрабатывалась и внедрялась сразу многими производителями, а затем непрерывно совершенствовалась, что продолжается и сейчас.
Удивительно ещё, что протоколов относительно немного. Укрупнённо их можно насчитать примерно девять, хотя если замечать все различия, то гораздо больше. Но особых проблем с совместимостью не возникает, сканеры включают в себя все интерфейсы, от первых, до самых совершенных.
Протоколы класса A самые низкоскоростные, но одновременно и простые, базируются на традиционных компьютерных последовательных интерфейсах, то есть не требуют значительных мощностей в виде преобразующих микроконтроллеров. Скорость до 10 кбит в секунду. Это то, что называют K-line.
Чуть более быстрые и сложные интерфейсные последовательные протоколы, лучше защищены от помех, используют различные виды модуляции цифрового сигнала. Скорость примерно в 5-10 раз выше.
Пока самые современные протоколы, к ним относится CAN-шина, то есть скорость порядка 500 кбит/c, увеличена разрядность кодовых посылок и усложнены прочие алгоритмы. Хорошая помехозащищённость дифференциального сигнала с витой пары.
Протокол ISO9141
Содержит два провода K и L, хотя обмен вполне возможен и по двунаправленной K-линии, без контроля по L. Раньше широко использовались «шнурки» — универсальные K-line адаптеры. Работает вполне надёжно, но очень медленно.
J1850 VPW
Относится к группе протоколов американского стандарта J1850. Применяется на машинах GM. Работает впятеро медленнее, чем полностью аналогичный по логике J1850 PWM, используемый Ford.
Различаются интерфейсы по физической реализации, одно- или двухпроводные линии, модуляция по широте или по скважности. Описаны в одном стандарте.
Расшифровка ошибок по системе OBD2
Общим для всех производителей являются коды ошибок DTC (Diagnostic Trouble Code), не всегда и всеми соблюдаемые, но к этому стремятся. Обычно каждый код содержит четыре или пять знаков.
Первый знак
Им может быть одна из четырёх букв:
- B – кузов, то есть код относится к кузовному оборудования, салону и прочему;
- P – силовой агрегат;
- C – шасси;
- U – сетевое обеспечение.
Подобная локализация задумана для удобства работы с кодами на ранних этапах, без расшифровок.
Второй знак
Второй знак примерно относит кодировку к стандартной на уровне ISO или используемой производителем. Здесь пока единства нет. «0» — это кодовая страница ISO или SAE.
Третий знак
Конкретизирует подсистему, где произошла неисправность. Согласно таблицам, где приводятся все коды, это может быть зажигание, питание, электронное обеспечение, элементы трансмиссии и прочие группы устройств.
Четвертый и пятый символы
Данные знаки выступают в роли двузначного кода, конкретизирующего произошедшую ошибку. Например, обрыв, замыкание, пропуск, выход значений из допустимых рамок. Выглядят хорошей подсказкой диагносту, хотя и не всегда.
OBD2 и ELM327
Считывать информацию и организовывать обмен через OBD можно самыми разнообразными профессиональными и любительскими устройствами. Но одна из фирм сделала удачный ход, создав прошивку универсального микроконтроллера, превратившего его в инструмент, преобразующий сигналы диагностического разъёма в типовой код для стандартного интерфейса бытовых компьютеров.
Небольшой приборчик, содержащий в типовом случае программируемый контроллер, микросхемы питания, электрически перезаписываемой памяти и связи по типовым интерфейсам (трансмиттеры), по габаритам ненамного крупнее разъёма.
Он устанавливается в розетку OBD2 и выдаёт сигнал стандартного последовательного интерфейса UART, известного ещё с первых персональных компьютеров. Физически его можно передавать в ноутбук, компьютер или планшет через распространённые интерфейсы USB, Bluetooth или Wi-Fi.
Это интересно: Расшифровка всех значков на приборной панели автомобиля
Информация обрабатывается и преобразуется в визуально удобную программным обеспечением персонального компьютера или смартфона. Приложения могут быть разного уровня сложности, платные и бесплатные, вплоть до наличия дилерских алгоритмов, если их уже написали для конкретной машины.
При этом сам адаптер остаётся простым, универсальным и дешёвым. Надо только проследить за наличием в нём всех рекламируемых возможностей по реализуемым функциям и протоколам. Это ещё не профессиональный уровень, но уже очень удобно во многих практических применениях.
Что такое диагностический разъем OBD
С 2006 года все автомобили, как легковые, так и грузовые вне зависимости от используемого топлива в обязательном порядке должны быть оснащены системой OBD. Это позволяет обслуживать автомобили и производить их ремонт на территории Евросоюза при условии наличия стандартизированного разъема OBD. При этом доступ к системам должен быть свободным для всех заинтересованных организаций и служб.
Обзор OBD
Как правило, в состав оборудования современных автомобилей входит электронный блок управления (ЭБУ). Это устройство предназначено для сбора и анализа данных о функционировании некоторых его систем. Чтобы предотвратить несанкционированное подключение к ЭБУ, можно выбрать один из трех способов:
установить дополнительный иммобилайзер с разрывом шины передачи данных;
установить любые дополнительные разъемы в разрыв шины передачи данных;
блокирование шины передачи данных OBD с помощью установки дополнительных каналов (должно происходить в режиме охраны сигнализации, которая установлена на ваше авто).
Общие понятия
Общий термин OBD означает самодиагностику автомобиля. Благодаря использованию этой технологии, появляется возможность контролировать различные системы автомобиля с помощью бортового компьютера.
В начале развития этой технологии имелась возможность получения информации о возникновении неисправности, однако, о ее причинах данные не поступали. В современных версиях в системе применяется стандартизированный цифровой интерфейс, благодаря которому имеется возможность получения получение данных о состоянии систем в реальном времени. При этом одновременно получаются коды неисправностей, идентифицирующих их.
Распиновка
Разъем OBD необходим для подключения приборов, с помощью которых контролируется функционирование систем автомобиля и определяют химический состав выхлопных газов. Под распиновкой OBD2 понимают определенные требования, которым подчиняются автопроизводители.
Место расположения диагностического разъема OBD должно располагаться на расстоянии максимум 18 см от рулевой колонки. Стандартизированная система характеризуется универсальностью и работает с использованием цифрового CAN-протокола, позволяющего получать детальную информацию о возникающих неисправностях.
Благодаря протоколам OBD2 становится возможно считывание параметров систем машины. Их число различается у разных автопроизводителей и зависит от ЭБУ.
Как правило, имеется возможность поддержки приблизительно 20 параметров. Для реализации контроля над какой-либо системой достаточно располагать 2-3 параметрами. В некоторых случаях их требуется больше. На количество параметров, контроль за которыми осуществляется одновременно, и форма их выдачи находится в зависимости от устройства, осуществляющего сканирование, и скорости передачи информации.
Устройство диагностического разъема OBD оснащено 16-ю контактами. Используя распиновку, происходит совмещение бортовых систем автомобиля с колодкой диагностики.
При обнаружении несоответствия состава выхлопных газов нормам, появляется надпись CheckEngine. Она говорит о том, что необходимо осуществить проверку двигателя.