Сцепление автомобиля. Диск сцепления
В любом автомобиле основным узлом является силовая установка – она обеспечивает преобразование энергию сгорания топлива в механическую энергию – вращение коленчатого вала. Вся работа силовой установки направлена только на получение этого вращения.
Но для движения автомобиля получение вращения недостаточно. Условий движения автомобиля очень много – ему нужно начать движение, где должно обеспечиваться максимальное тяговое усилие, после набрать скорость, где уже тяговое усилие не так важно, но требуется высокая скорость вращения, а также автомобиль должен менять скорость движения быстро меняя скорость вращения и тяговое усилие.
Двигатель автомобиля этого обеспечить не может, поскольку скорость вращения коленчатого вала находится в определенном диапазоне и силовой установкой менять скорость и тяговое усилие никак не получится.
Сцепление – зачем оно?
Поэтому в конструкцию автомобиля входит еще один немаловажный элемент – трансмиссия. Именно она обеспечивает передачу вращения от силового агрегата на ведущие колеса. При этом, входящая в состав трансмиссии коробка передач позволяет менять тяговое усилие и скорость вращения, подающиеся на ведущие колеса. Классическая механическая коробка передач состоит из валов и шестерен разных диаметров. Ввод в зацепление определенных шестерен позволяет изменять усилие и скорость.
Но вращение от двигателя подается на трансмиссию постоянно. Это вращение делает невозможным во время движения выводить из зацепления одни шестерни и вводить другие. Поэтому в конструкцию трансмиссии включен еще один элемент – сцепление.
Сцепление предназначено для кратковременного разъединения силовой установки и КПП. В результате работы сцепления коробка отсоединяется от мотора, то есть, вращение коленчатого вала перестает подаваться на коробку, что позволяет вводить без проблем нужные шестерни.
На легковых авто с механическими КПП распространение получило однодисковое сухое сцепление. Состоит такое сцепление из ведущего диска, помещенного в корзину, ведомого диска, выжимных рычагов или диафрагмы, выжимного подшипника и привода. Все это закрывает сверху картер сцепления.
Принцип работы
Принцип работы сцепления автомобиля
Принцип работы такого сцепления довольно прост: корзина вместе с ведущим диском жестко закреплена на маховике коленчатого вала. Сам диск может перемещаться относительно корзины, но он подпружинен. Между ведущим диском и маховиком помещен ведомый диск. На этот диск нанесены фрикционные накладки, значительно повышающие трение. По центру ведомого диска расположена ступица. В ней проделано отверстие со шлицами. В ступицу входит ведущий вал коробки передач, а шлицевое соединение обеспечивает надежное, но подвижное соединение – диск может перемещаться по валу, но при этом вращение будет передаваться постоянно.
Когда необходима передача вращения от мотора на КПП, сцепление отпущено. В таком положении ведущий диск за счет давления пружин поджимает ведомый диск к маховику. Наличие фрикционных накладок обеспечивает значительную силу трения, ведомый диск не проскальзывает относительно ведущего диска и маховика. А поскольку ведомый диск связан с валом КПП шлицевым соединением, то производится передача вращения.
Нажимной диск (в просторечии – корзина сцепления) справа, и ведомый диск, слева. Нажимной диск крепится болтами к маховику двигателя
Чтобы отсоединить КПП от мотора, водитель нажимает на педаль сцепления. При помощи привода он воздействует на выжимной подшипник. Тот, перемещаясь, начинает давить на выжимные рычаги или диафрагму, в результате чего ведущий диск отходит внутрь корзины, преодолевая усилие пружин. Он перестает поджимать ведомый диск к маховику, из-за чего передача вращения прекращается, что дает возможность переключить передачу на КПП.
Сцепление также помогает плавно начать движение. При постепенном отпускании педали, ведущий диск плавно увеличивает давление на ведомый диск. При малом усилии ведомый диск начинает принимать вращение, но из-за недостаточного поджатия, он проскальзывает. По мере отпускания педали и поджатия ведомого диска, он все больше принимает вращение, а проскальзывание уменьшается.
Видео: Принцип работы сцепления
Чтобы при выжиме педали и последующим переключением передач, при отпускании педали сцепления не было ударных нагрузок при резкой подаче вращения, ступица ведомого диска закреплена на нем не жестко. Она соединяется при помощи демпферных пружин, которые выравнивают возникающие крутильные колебания.
Классификация
Это было описана конструкция и принцип работы однодискового сухого сцепления. Однако их существует несколько видов, со своими определенными особенностями. Вообще даже введена целая классификация типов сцепления.
Эта классификация делит сцепления по типу привода, используемому трению, количеству ведомых дисков, механизму отжатия ведущего диска.
Существует несколько типов привода сцепления. Самый первый и простой привод – механический. В нем задействуется система рычагов и тяг, или же привод может быть тросовый.
Есть привод гидравлический. В таком приводе в качестве рабочего элемента используется жидкость. В конструкцию входят два цилиндра – главный связан с педалью сцепления, а рабочий – с вилкой, которая перемещает выжимной подшипник.
На некоторых грузовых авто применяется пневматический привод, в качестве рабочего элемента которого выступает сжатый воздух. У такого привода педаль сцепления связана с краном управления. При воздействии на педаль, водитель открывает кран, и воздух под давлением поступает в пневматическую камеру, связанную с вилкой.
Есть также и комбинированные приводы, которые совмещают в себе несколько типов описанных выше приводов (к примеру – гидромеханический привод).
Классификация по используемому трению делит сцепления на сухие и в масляной ванне. Сухие, такое как описано выше, работает в воздушной среде. На многих мотоциклах же применяется сцепление, которое помещено в масляную ванну.
Что касается классификации по количеству ведомых дисков, то встречаются однодисковые, двухдисковые и многодисковые. Однодисковое описано выше. В двухдисковом применяется два ведомых диска и два ведущих диска – промежуточный и ведущий. Принцип работы идентичен однодисковому, разница только в количестве дисков и механизме срабатывания. Существуют многодисковые сцепления, которые получили распространение на мотоциклах.
По механизму отжатия сцепления делятся на рычажные и диафрагменные. В рычажных сцеплениях отжим ведущего диска производится подпружиненными рычагами, на которые и воздействует выжимной подшипник. В диафрагменном сцеплении роль пружин и рычагов выполняет диафрагма, сделанная из пружинистого металла.
Основные неисправности
Конструкция сцепления не включает значительное количество составляющий, поэтому и ломается оно не так часто. И все же в сцеплении тоже бывают неисправности.
Видео: Как определить износ корзины и маховика
Поскольку самое большое распространение на легковых авто получило однодисковое сухое сцепление, то рассмотрим самые частые неисправности, которые случаются с ним:
- Пробуксовка сцепления. Обычно возникает такая неисправность из-за неправильной регулировки привода. Из-за поджатия выжимного подшипника, он не позволяет ведущему диску полностью прижать ведомый диск к маховику, в результате чего появляется проскальзывание. Сопровождается такая неисправность характерным запахом жженных фрикционов в салоне, затрудненностью переключения передач. Сильный износ фрикционов, или их повреждение тоже может сопровождаться такими симптомами;
- Сцепление «ведет». Данная проблема тоже возникает из-за неправильной регулировки. В данном случае выжимной подшипник не способен полностью отжать ведущий диск из-за увеличенного зазора между подшипником и вилкой. Верный признак того, что сцепление «ведет» — это продолжение движения авто после полной остановки и выжима сцепления при включенной 1-й передаче;
- Гул со стороны картера сцепления. Повышенный шум в данном узле может создавать только один элемент – выжимной подшипник. Шуметь он может либо в результате пробуксовки, либо же из-за чрезмерного износа;
Бывают и другие неисправности, но они встречаются гораздо реже, чем описанные выше. Так, проблемы со сцеплением могут возникнуть из-за разрушения диафрагмы или пружин выжимных рычагов, значительного износа демпферных пружин и т. д.
Напоследок хочется отметить, что особо сложного обслуживания сцепление не требует. Достаточно периодически регулировать свободный ход привода, а также соблюдать рекомендации по аккуратному вождению.
Ведомый диск сцепления
Как уже говорилось в предыдущих статьях, ведомый диск сцепления предназначен для передачи крутящего момента от маховика и ведущего диска сцепления на первичный вал коробки передач, а также для обеспечения плавного трогания автомобиля с места и быстрого переключения передач водителем. В от о том, из каких элементов состоит ведомый диск сцепления, мы и поговорим в этой статье.
Кроме этого, задача ведомого диска состоит в ограничении распространения на трансмиссию колебаний крутящего момента двигателя (крутильных колебаний). Недорогим и компактным решением этой проблемы является ведомый диск сцепления с демпфером крутильных колебаний (рис. 1 «Ведомый диск сцепления с демпфером крутильных колебаний и упругими лепестками крепления фрикционных накладок«). Он оснащен системой пружинных демпферов определенной жесткости с фрикционными элементами управления, позволяющей гарантировать надлежащее демпфирование крутильных колебаний в любом рабочем состоянии (рис. 2 «Функциональная схема и графическая характеристика демпфера крутильных колебаний«).
С помощью современных технологий моделирования можно достичь значительного ограничения распространения колебаний в области трансмиссии (рис. 3 «Диаграммы крутильных колебаний с демпфером крутильных колебаний и без него на холостом ходу«). Ограничение распространения колебаний способствует, среди прочего, снижению расхода топлива и уровня токсичности отработавших газов при работе двигателя на холостом ходу.
Кроме этого, оптимальная конструкция крепления фрикционных накладок обеспечивает плавную передачу на трансмиссию крутящего момента при трогании автомобиля с места, а также эргономичную передачу усилия с педали сцепления, что значительно улучшает плавность выключения и включения сцепления.
Фрикционные накладки
Основным свойством переключаемого фрикционного сцепления, как явствует из названия, является передача крутящего момента за счет фрикционного замыкания. Фрикционное замыкание создается с помощью фрикционных накладок, установленных с помощью заклепок и/ или клея на упругой основе ведомого диска сцепления, в связи с чем изготовлению накладок отводится особое место в технологии производства сцеплений.
Фрикционные накладки, в зависимости от условий эксплуатации, подвергаются растяжению, сдвигу и изгибу, поэтому должны обладать следующими свойствами:
- Высокая механическая прочность;
- Термостойкость;
- Медленный износ материала поверхности, сопряженной с поверхностью трения;
- Возможность использования в широком диапазоне температур;
- Невосприимчивость к атмосферным воздействиям;
- Отсутствие шумов при трении.
Коэффициент трения фрикционных накладок и параметры износа зависят от таких факторов, как:
- Длительность нагрузки (фаза проскальзывания);
- Состав материала фрикционной накладки;
- Температура поверхности трения;
- Давление прижима;
- Скорость скольжения;
- Материал сопряженных поверхностей трения.
Фрикционные накладки сцепления должны обладать также дополнительными свойствами в зависимости от условий эксплуатации. Расположенные на ведомом диске накладки вращаются с высокой частотой. Возникающие при этом центробежные силы способны вызвать в накладках высокое внутреннее напряжение. Именно поэтому важным критерием при конструировании и выборе фрикционных накладок сцепления является их прочность на разрыв.
Прочность на разрыв, или прочность при повышенной частоте вращения, должна превышать на величину коэффициента надежности прочность накладок в обычных условиях эксплуатации. Она зависит от технологии производства, диаметра ведомого диска и величины возможных температурных воздействий. Фрикционные накладки должны до определенных пределов легко переносить пиковые температуры в сочетании с высокой частотой вращения ведомого диска сцепления, что возможно из-за ошибок водителя (например, неправильный выбор ступени при переключении на пониженную передачу).
Масса фрикционных накладок оказывает серьезное влияние на момент инерции масс ведомого диска сцепления и, тем самым, на легкость переключения ступеней в коробке передач и срок службы синхронизаторов. Поэтому при выборе фрикционных накладок этот критерий имеет особенное значение. В результате последних разработок были созданы фрикционные накладки с уменьшенной массой, которые можно узнать по выемкам на обратной стороне фрикционной поверхности. Необходимая прочность обеспечивается перемычками в местах расположения заклепок.
Канавки на поверхности фрикционных накладок служат для отведения пыли, образующейся при рабоче сцепления. Кроме этого, они способствуют оптимальному завихрению потока охлаждающего воздуха и предотвращают присасывание к сопряженным поверхностям трения на маховике и нажимном диске сцепления. Для той же цели служат полые заклепки крепления фрикционных накладок.
Фрикционные накладки из органических материалов
В настоящее время на автомобилях используются преимущественно фрикционные накладки ведомого диска сцепления, изготовленные из органических материалов (рис. 4 «Варианты исполнения фрикционных накладок сцепления«). Еще пару лет назад основным материалом для производства фрикционных накладок был длинноволокнистый асбест. Сегодня же используются исключительно безасбестные заменители, такие, как стекловолокно, минеральная вата, а также угольные и арамидные волокна. В качестве заполнителей и основы применяется множество материалов, по разному влияющих на свойства фрикционных накладок, а именно:
- Шпат, каолит, силикаты и оксиды алюминия обеспечивают прочность фрикционных накладок;
- Металлы, сульфиды и оксиды металлов улучшают эффективность отверждения и вулканизации при изготовлении накладок;
- Смолы и хлопок обеспечивают постоянный коэффициент трения и уменьшают износ накладок;
- Смолы, кроме того, служат связующим веществом и положительно влияют на коэффициент трения.
При производстве прессованных фрикционных накладок безасбестные заменители соединяются с заполнителем и смолами, тщательно перемешиваются, после чего полученная масса заливается в форму и затвердевает при нагреве под давлением. Полученные заготовки подвергаются механической обработке.
Преимуществом этой экономичной технологии является равномерное перемешивание волокнистых материалов и заполнителей, что гарантирует стабильность свойств фрикционных накладок.
При производстве тканых фрикционных накладок в качестве основы используются длинноволокнистые заменители, а также частично латунные, медные и оловянные волокна, которые сплетаются в нити. Из этих нитей, в свою очередь, плетется ткань с сетчатой или решетчатой структурой. Полученные заготовки также соединяются с заполнителем и спекаются в форме при нагреве под давлением.
Преимуществом тканых фрикционных накладок является высокая прочность при повышенной частоте вращения.
Навитые фрикционные накладки в прошлом производились преимущественно из асбеста. Асбестовые волокна сплетались с металлическими волокнами в нить, которая пропитывалась заполнителем и по спирали навивалась на диск.
Основными аргументами в пользу этой технологии была небольшая масса фрикционных накладок и высокая прочность при повышенной частоте вращения.
Коэффициент трения фрикционных накладок из органических материалов составляет от 0,26 до 0,30 при термостойкости до 300 °С.
Фрикционные накладки из неорганических материалов
В сцеплениях, испытывающих сильные термические нагрузки, используются преимущественно фрикционные накладки из неорганических порошковых материалов (рис. 4).
В зависимости от основного компонента различают накладки на основе бронзового или железного порошка. Коэффициент трения и свойства фрикционных накладок зависят от содержания в них углерода, оксида алюминия, кварцита, магнезита и муллита.
В процессе производства порошковый материал предварительно прессуется в форме и подвергается в печи диффузионному спеканию. На следующем этапе производится спекание под давлением и окончательное прессование. Полученные спеченные детали (рис. 4, внизу) закрепляются на держателе фрикционной накладки с помощью заклепок.
Для использования в среде крайне высоких температур подходят порошковые материалы с высоким содержанием керамических добавок. Однако из-за высокой хрупкости таких металлокерамических фрикционных накладок они должны быть установлены на специальных держателях.
Коэффициент трения фрикционных накладок из неорганических материалов составляет до 0,5, что, хотя и обеспечивает высокую эффективность передачи крутящего момента, вызывает сильный износ сопряженных поверхностей трения и внезапное зацепление при включении сцепления. Кроме этого, сравнительно высокая масса спеченных фрикционных накладок является причиной высокого момента инерции масс ведомого диска сцепления.
Благодаря своей высокой термостойкости спаянные фрикционные накладки могут без проблем выдерживать температуру до 600 °С.
Упругое крепление фрикционных накладок
Для крепления фрикционных накладок сцепления используются тонкие волнистые упругие сегменты, или лепестки, из листового металла. Эти сегменты образуют упругую основу ведомого диска, они изготавливаются путем штамповки из рессорной полосовой стали, имеют толщину от 1 до 2 мм и жестко соединяются с демпфером крутильных колебаний ведомого диска.
Упругая основа крепления фрикционной накладки обычного ведомого диска имеет ход от 0,8 до 1,2 мм и обладает четырьмя основными преимуществами по сравнению с жестким креплением:
- Равномерное пятно контакта фрикционной накладки
Упругая основа крепления компенсирует отклонения в толщине фрикционных накладок и деформацию при нагреве.
Выпуклые упругие сегменты обеспечивают более равномерное пятно контакта и, тем самым, более медленный износ накладок.
В свою очередь, равномерное пятно контакта обеспечивает равномерное распределение тепла, что значительно снижает риск появления трещин в результате чрезмерного нагрева и напряжения. - Обеспечение плавного трогания автомобиля с места
При включении сцепления нажимной диск должен сначала прижать ведомый диск к маховику, преодолев сопротивление упругой основы. Так как это сопротивление нарастает постепенно, уменьшение разницы частоты вращения между коленчатым валом двигателя и коробкой передач происходит плавно и без рывков, что обеспечивает мягкое включение сцепления и плавное трогание автомобиля с места. - Плавная работа сцепления
Обеспечиваемая упругим креплением «осевая упругость» фрикционных накладок в определенных пределах влияет на плавность выключения и включения сцепления. - Постоянный диаметр трения
При большом диаметре сцепления, что часто встречается в транспортных средствах промышленного назначения, мгновенная ударная нагрузка может стать причиной деформации и значительного уменьшения диаметра трения. Упругое крепление фрикционных накладок способно предотвратить это и обеспечить высокую эффективность передачи сцепления.
В настоящее время используются четыре различных типа упругого крепления фрикционных накладок в зависимости от условий эксплуатации: упругое крепление с одинарными сегментами, упругое крепление с двойными сегментами, пластинчатое упругое крепление и упругое крепление с промежуточной плитой.
Упругое крепление с одинарными сегментами
Упругое крепление с одинарными сегментами представляет собой набор выпуклых лепестков, к которым в шахматном порядке приклепаны две фрикционные накладки. Лепестки, в свою очередь, соединены заклепками с демпфером крутильных колебаний ведомого диска сцепления.
При этом желательно, чтобы выпуклая сторона упругих лепестков (упругого крепления) была обращена в сторону нажимного диска сцепления. В этом случае уменьшается осевой ход ступицы ведомого диска на валу коробки передач при выключении и включении сцепления, что оказывает положительное влияние на степень износа деталей.
Ведомые диски, имеющие упругое крепление с одинарными сегментами (рис. 5 «Ведомый диск сцепления легкового автомобиля, на котором фрикционные накладки приклепаны к упругой основе с одинарными сегментами«), обладают небольшим маховым моментом, что положительно сказывается на включении передачи заднего хода (например, при парковке или маневрировании). Для полной остановки ведомого диска сцепления требуется немного времени, поэтому переключение передач происходит быстро.
Заклепочный шов между упругими сегментами с фрикционной накладкой и демпфером крутильных колебаний является «слабым местом» сцепления. Смещение вала коробки передач относительно коленчатого вала или неправильная посадка ступицы ведомого диска на первичный вал коробки передач могут стать причиной деформации и, как неизбежное следствие, поломки в этом месте.
Упругое крепление с двойными сегментами
При упругом креплении с двойными сегментами (рис. 6 «Ведомый диск сцепления легкового автомобиля, на котором фрикционные накладки приклепаны к упругой основе с двойными сегментами«) два ряда симметричных упругих лепестков расположены тыльной стороной друг к другу между фрикционными накладками. Они предварительно напряжены друг относительно друга, соединены в шахматном порядке с фрикционными накладками и позволяют в полной мере использовать имеющийся упругий ход лепестков.
По сравнению с упругим креплением с одинарными сегментами каждый двойной сегмент обеспечивает только половину упругого хода, поэтому такие ведомые диски отличаются меньшей осадкой и большим сроком службы.
Недостатками данного варианта упругого крепления является более высокий маховый момент и увеличенная стоимость изготовления.
Пластинчатое упругое крепление
Ведомые диски с пластинчатым упругим креплением (рис. 7 «Ведомый диск сцепления легкового автомобиля, имеющий пластинчатое упругое крепление фрикционных накладок«) используются там, где из- за ограниченного пространства невозможно использовать заклепочное соединение одинарных сегментов с демпфером крутильных колебаний.
Сплошной диск пластинчатого упругого крепления позволяет уменьшить конструктивную высоту ведомого диска сцепления.
Диск пластинчатого крепления, соединяемый заклепками с демпфером крутильных колебаний, имеет волнистую поверхность наружного края с прорезями. Принцип действия аналогичен упругому креплению с одинарными сегментами.
При высокой нагрузке относительно тонкий диск пластинчатого крепления может быть усилен вторым, дополнительным диском в области демпфера крутильных колебаний.
Упругое крепление с промежуточной опорой
В тяжелых транспортных средствах промышленного назначения с большим диаметром дисков сцепления часто используются ведомые диски, в которых используется упругое крепление фрикционных накладок с промежуточной опорой (рис. 8 «Ведомый диск сцепления грузового автомобиля, имеющий упругое крепление фрикционных накладок с промежуточной опорой«).
В данном случае фрикционная накладка со стороны маховика приклепана непосредственно к промежуточной опоре, представляющей собой жесткую шайбу большого диаметра. Со стороны нажимного диска сцепления к этой опоре приклепаны волнистые упругие лепестки (как в конструкции с одинарными сегментами), которые поддерживают вторую фрикционную накладку.
Хотя этот вариант и имеет недостаток в виде высокого махового момента, однако он гарантирует долгий срок службы сцепления при самых экстремальных нагрузках.
Демпфер крутильных колебаний
В отличие от электродвигателей или турбин, у двигателей внутреннего сгорания отдаваемый крутящий момент не является постоянной величиной, а характеризуется определенной степенью неравномерности. Постоянное изменение угловой скорости коленчатого вала вызывает колебания как следствие его ускорения или замедления. Без специальных мер эти колебания могли бы беспрепятственно передаваться через сцепление на первичный вал коробки передач и вызывать дребезжание из-за соприкосновения шестерен друге другом.
Подобные колебания вызывают, кроме всего прочего, появление посторонних шумов, однако их появление зависит не только от неравномерной работы двигателя. Возникновению и усилению нежелательных шумов способствует несоответствующее качество изготовления шестерен, коленчатого вала и его вкладышей, неправильно выбранная вязкость используемого трансмиссионного масла, количество находящихся в зацеплении шестерен, а также все более низкая инерционная масса и легкие конструкции современных автомобилей.
Для того, чтобы возникающие крутильные колебания не передавались беспрепятственно от двигателя на коробку передач, ведомый диск сцепления оснащен демпфером (или гасителем) крутильных колебаний (рис. 9 «Демпфер крутильных колебаний легкового автомобиля с отдельным предварительным демпфером«), включающим в себя поворотный и фрикционный механизмы.
Поворотный механизм состоит из основы ведомого диска и пластины демпфера, жестко соединенных заклепками, а также нескольких демпферных пружин, которые предназначены для передачи крутящего момента на ступицу ведомого диска, сжимаясь в зависимости от вели-чины передаваемого момента. Пружины расположены в окнах основы ведомого диска, пластины демпфера и фланца ступицы, что обеспечивает поворачивание последнего на угол до ±18° относительно основы ведомого диска. При этом демпферные пружины пребывают поочередно в состоянии сжатия и растяжения. За счет изменения величины зазора и упругости пружин достигаются различные характеристики демпфера крутильных колебаний. Использование нескольких пружин с различной упругостью позволяет обеспечить многоступенчатую или прогрессивную характеристики работы механизма.
Фрикционный механизм предотвращает раскачивание демпфера крутильных колебаний, которое возникает из-за осевого перекоса фланца ступицы между основой ведомого диска и пластиной демпфера.
Самый простой вариант, при котором сталь трется о сталь, не обеспечивает надлежащее фрикционное демпфирование и таит в себе опасность глубокой коррозии.
Фрикционные кольца, изготовленные из пластика или органического материала, позволяют достичь желаемых коэффициентов трения и соответствующих параметров износа. Небольшие тарельчатые пружины сжимают фрикционный механизм и обеспечивают постоянный коэффициент трения.
Двухступенчатый демпфер крутильных колебаний с простым фрикционным приспособлением
Двухступенчатый демпфер крутильных колебаний (рис. 10 «Двухступенчатый демпфер крутильных колебаний с металлическим фрикционным приспособлением«) оснащен простым фрикционным приспособлением. В данном варианте металл трется о металл, а тарельчатая пружина (2) обеспечивает постоянный коэффициент трения.
Фланец ступицы (8) располагается между основой ведомого диска (6) и пластиной демпфера (7) и поддерживается двумя пружинами основного демпфера первой (3) и второй ступени (4).
Максимальный угол поворота между фланцем ступицы и основой ведомого диска с пластиной демпфера составляет 18°. Перегрузка может вызвать соприкосновение с заклепкой (1).
Двухступенчатый демпфер крутильных колебаний с фрикционными кольцами
В отличие от варианта с простым фрикционным приспособлением, изображенного на рисунке 10, демпфер крутильных колебаний с рисунка 11 «Двухступенчатый демпфер крутильных колебаний с фрикционными кольцами» оснащен двумя фрикционными кольцами (9) . Они могут быть выполнены из органического материала (высокий коэффициент трения, сильный износ) или пластика (низкий коэффициент трения, хорошие параметры износа).
Постоянный уровень трения достигается за счет тарельчатой пружины (2) с опорной шайбой (10) . Вторая ступень демпфирования реализуется с помощью двух вложенных друг в друга пружин (4) , дающих более крутую графическую характеристику.
Двухступенчатый демпфер крутильных колебаний с отдельным предварительным демпфером
Следующим вариантом, более дорогим с точки зрения производства, является демпфер крутильных колебаний с отдельным предварительным демпфером.
На рисунке 12 «Двухступенчатый демпфер крутильных колебаний с отдельным предварительным демпфером и фрикционными кольцами» изображен трехступенчатый механизм, состоящий из двухступенчатого основного демпфера и отдельного двухступенчатого предварительного демпфера.
Пружины первой (11) и второй (12) ступеней предварительного демпфера отличаются очень низкой упругостью и работают в основном в режиме холостого хода. По достижении определенного угла поворота фланца (14) относительно кожуха (15) предварительного демпфера в работу включаются пружины (3 и 4) первой и второй ступеней основного демпфера.
Три фрикционных кольца (9) начинают работать при различных углах поворота подвижных деталей демпфера относительно друг друга. В данном случае постоянный коэффициент трения достигается за счет предварительного натяжения тарельчатых пружин.
интересная статья про сцепление! может кто что новое почерпнет.
интересная статья про сцепление! может кто что новое почерпнет. ⇐ LT1. Общие вопросы
Модератор: andron
Сообщение максимус » 11 ноя 2015, 21:40
Данный материал взят с родственного ссайта «GOLF Лаборатория». Думаю, что многим будет интересно ознакомиться с его содержанием. В статье даны рекомендации и советы по ремонту и эксплуатации сцепления, а также озвученны некоторые причины выхода из строя данного узла. Извиняюсь, если эта статья уже приводилась на нашем сайте.
Сцепление — диагностика, ремонт
Вступление
Мы много лет сотрудничаем с фирмой РУСИМПОРТКОМПЛЕКТ, которая является официальным дистрибьютором многих немецких производителей запчастей, в том числе Sachs, Boge, Lucas, TRW. Раз в год, в Москве и в Санкт-Петербурге, поставщики проводят семинары для своих партнёров в России. В этом году РИК пригласил и меня, как своего представителя, прослушать подобный курс. Может, мы чего не знаем? Оказалось, знаем почти всё, хотя никто нас этому специально не учил — дошли своим умом. Мне захотелось изложить всё увиденное и услышанное в письменном виде. Вдруг и вам будет интересно? А ещё лучше — если пригодится в практике.
Сцепление
Первый семинар, посвященный сцеплениям и амортизаторам, проводил представитель Sachs — Wolf-Peter Moritz (см. Фото 1). Его занятия были построены следующим образом: всех приглашенных (порядка 20-ти человек) собрали на территории сервис-центра одного из представителей (см. Фото 2). «Подопытным кроликом» послужил БМВ520, владелец которого жаловался на рывки после нагрева, при отпускании педали. Преподаватель показал, как надо диагностировать само сцепление, привод. Просил обратить внимание на некоторые детали, и запомнить ощущения. После чего все прошли в класс и занялись изучением теории, а механики начали снимать КП. Потом позвали всех участников семинара, и преподаватель показал, на что также надо обращать внимание при данной работе, показал правильную установку комплекта, и продолжил теоретический курс. Потом мы все попробовали педаль сцепления на отремонтированном автомобиле. Потом снова теория, и ответы на вопросы. Я попробую восстановить события в письменном виде. Не буду вдаваться глубоко в устройство и принцип самого сцепления, заострю внимание только на тех деталях, которые, на мой взгляд, этого заслуживают. Извините, если получилось не очень качественно.
Немного теории
Самое главное, что надо усвоить: СЦЕПЛЕНИЕ, это заведомо слабый узел в автомобиле. Его поломка намерено запрограммирована. Другой вопрос, сколько оно прослужит. Главная задача СЦЕПЛЕНИЯ — передавать крутящий момент от двигателя дальше по цепочке. Значит, оно должно выдерживать усилие, равное Максимальному Крутящему Моменту, + очень небольшой запас, порядка 1,1-1,3. И если нагрузка его превысит, сцепление выйдет из строя, сохранив тем самым в рабочем состоянии более дорогостоящие двигатель, трансмиссию и пр.
Следующее, что также надо знать: СЦЕПЛЕНИЕ будет работать долго и правильно, если исправны все элементы, связанные с ним. Поэтому, диагностируя, ремонтируя или меняя сцепление, надо внимательно разобраться в причина ето самое место, приведших к необходимости вмешательства.
Устройство
Непосредственно сам узел, который мы называем сцеплением, состоит из «корзины», диска и выжимного подшипника. Именно в таком виде они и продаются, как «комплект». (Кстати, производитель рекомендует давать гарантию, только если узел меняется именно комплектом.)
Усилие от коленчатого вала передается диском с фрикционными накладками, когда при отпускании педали сцепления мощная пружинчатая пластина , закрепленная в корзине, прижимает диск к маховику. Сам диск расположен на шлицевой части первичного вала КП. Между фланцем со шлицами и фрикционными накладками, расположенными по периметру, на ето самое местоодится демпферное устройство, или «гаситель крутильных колзабавний», которые имеются на всём протяжении движения. Плавности трогания и включения сцепления помогают пружины МЕЖДУ фрикционными накладками (этот момент, честно говоря, был для меня открытием).
Практика
Диагностика
При выключенном моторе медленно нажать на педаль сцепления. Обратить внимание на плавность хода. Рывки, провалы, всякие скрипы и пр. звуки недопустимы. Они говорят о неисправности системы выжима.
Запомнить усилие, прикладываемое при нажатии на педаль. Медленно отпустить. Усилие для её удержания должно быть НЕ меньшим, чем требуемое для нажатия. И также без рывков.
В варианте устройства корзин для легковых автомобилей (а есть ещё и для грузовиков) усилие, прикладываемое для выжима, должно увеличиваться по мере износа. Значит сама по себе «тугая» педаль уже является тревожным симптомом.
Запустить мотор. Выжать сцепление, сосчитать до трёх, включить передачу заднего хода. Допускается один щелчок. Если раздаётся треск, или затруднено включение передачи, скорее всего диск не может свободно передвигаться по шлицевой части первичного вала, или чрезмерный суммарный люфт в системе выжима.
Вывернуть руль в крайнее положение, поставить автомобиль на ручной тормоз. Включить первую передачу. Плавно отпускать педаль сцепления. Автомобиль должен пытаться трогаться в первой трети хода педали. В противном случае опять-таки неисправна система выжима. Гидропривод или тросик.
После диагностики приступаем к снятию КП. Если причина демонтажа — рывки или вибрации, обратите внимание на остальные узлы трансмиссии. Любая деталь автомобиля в процессе работы имеет свои колзабавния. Когда частота колзабавний нескольких элементов совпадает, появляется ощутимая для водителя и автомобиля вибрация, появляется посторонний шум.
Диск сцепления
Наиболее частой причиной преждевременного выхода из строя сцепления является попадание масла или смазки, даже в небольших количествах (см. Фото 4). При этом на фрикционных накладках остаются характерные полосы разного цвета. Местами утечки могут быть уплотнения и сальники КП (см. Фото 5), задний сальник коленчатого вала. Даже излишки смазки, заложенной при монтаже. Даже отпечатки жирных пальцев, оставленные при монтаже, непременно внесут свою лепту.
Разрушение демпфера, выраженное выпадением пружинок, трещины в корпусе (см. Фото 6,7), является следствием:
медленной езды на высокой передаче. Это ошибка эксплуатации
несоосность двигателя и трансмиссии (см. Фото .Причин может быть несколько. Отсутствие направляющих, центрующих КП относительно блока двигателя, или их деформация. Грязь на привалочных плоскостях. Деформация или отсутствие пыльника между КП и блоком
разрушение подшипника первичного вала (на тех моделях, где он размещен в коленчатом валу)
Неравномерный износ накладок. Возможны два варианта. Если тоньше накладка, обращенная к маховику, диск подклинивал на шлицах. Если вторая сторона — виноват водитель — неправильная работа педалью.
Корзина
Не все дефекты могут быть видны при внешнем осмотре (см. Фото 9). Поэтому корзина всегда автоматически меняется. Если сцепление демонтировано, попутно, при проведении других работ, обратите внимание на поверхность прижимного диска. На нем не должно быть царапин, канавок
Маховик
Обязательно проверить на плоскость (см. Фото 10). Если есть неровности или другие повреждения, допускается шлифовка, но не больше 1 мм. Чтобы не снизить ресурс сцепления, рекомендуется шлифовать и посадочное место под корзину. Если причиной поломки послужило попадание масла, поверхность маховика надо обезжирить сухой (!) бумагой, в крайнем случае — шкуркой. Применение бензина, или какой либо химии не допускается.
Если на буксующем сцеплении машина проехала значительное расстояние, или есть другие следы перегрева, обязательно следует рассмотреть поверхность маховика на предмет наличия микротрещин. Как определить, был ли перегрев? Оказывается, можно по цвету поверхности маховика.
ЖЕЛТЫЙ цвет соответствует 380-420 градусам
СИНИЙ цвет соответствует 500 градусам
ФИОЛЕТОВЫЙ цвет соответствует 600 градусам
Выжимной подшипник.
Место его соприкосновения с корзиной — лепестки. Эти две поверхности должны соответствовать друг другу. Бывает два вида:
1. Плоская рабочая часть подшипника должна работать по закругленным концам лепестков диафрагменной пружины.
2. И наоборот, если лепестки плоские, подшипник должен быть выпуклым.
Поэтому обратите внимание, не допустил ли прежний владелец ошибки, сэкономив на замене подшипника при замене корзины, и соответствуют ли они друг другу.
Направляющая втулка выжимного подшипника
Эта деталь должна быть идеальной цилиндрической формы. Помните, что на небольших задирах, которые подшипник в ваших руках будет проходить спокойно, станут серьезным препятствием, когда появится реальная нагрузка (см. Фото 11).
Механизм привода выжима сцепления
Следующее «тонкое» место — упор выжимной вилки в подшипник. Износ должен быть равномерным. И иметь явно выпуклую форму.
Сама вилка, её ктыквеж, втулки оси (если есть) и «точка опоры» (см. Фото 12) должны быть тщательно осмотрены. Люфты, неравномерность износа, приводящие к перекосу недопустимы (см. Фото 13)
Если привод гидравлический, надо уделить внимание рабочему цилиндру. Взяв в руки, медленно надавить на шток, утопить его до конца. Ход штока должен быть равномерным, отпущенный шток должен полностью вернуться назад, до упора. В противном случае необходима переборка, или замена. Чаще всего причиной неравномерности служит старая тормозная нлокость, частично кристаллизирующаяся на стенках цилиндра.
Тросик привода выжима при замене неисправного сцепления желательно сразу поменять. Дело в том, что сам трос двигается в пластиковой рубашке, которая, в свою очередь, на ето самое местоодится в металлической оболочке. Когда усилие нажатия для выжима увеличивается, сам трос начинает перепиливать пластик, и в итоге неизбежно начнет соприкасаться с металлом, вследствие чего оборвется.
Не надо забывать и «отправную точку»- саму педаль сцепления. Точнее, её ось. Даже при естественном износе сцепления увеличивается усилие, прикладываемое на педаль, что не может не сказаться на втулках. Более того, если водитель не обращает внимание на изменение усилия, можно поплатиться и сломанным блоком педалей. Особенно этому подвержены вторые Гольфы.
И вот старое сцепление снято, в причина ето самое место разобрались. Начинаем собирать обратно.
Рекомендуемый порядок сборки
1) визуально сравните детали старого и нового комплекта. Дизайн и мелкие детали могут отличаться, но геометрические размеры, например диаметр, должны совпадать.
2) если нет специального прибора для измерения биения диска сцепления (см. Фото 14), наденьте его на первичный вал, и с помощью микрометра проверьте, вращая вал руками. Допустимый люфт составляет 0,5-0,6 мм, в противном случае начнутся сложности с включением передач.
3) смазать шлицевую часть в диске (см. Фото 15), надеть на сухой, очищенный первичный вал КП, подвигать вперед-назад, снять диск. С первичного вала полностью удалить смазку, а так же смазку на диске, выступившую за края шлицев.
4) зачистить направляющую втулку выжимного подшипника. Смазывать только в том случае, если ответная часть НЕ пластиковая. Тонкий слой так же нанести на упор вилки, и те места, которые непосредственно нажимают на подшипник, предварительно придав им (при необходимости) сферическую форму.
5) зачистить стыковочные места КП и блока. Убедится, что на месте все направляющие, и они не деформированы. Обезжирить рабочую поверхность маховика. При необходимости обработать шкуркой. Удалить (например, сжатым воздухом) остатки фрикционного материала изо всех углов и щелей.
6) с помощью кондуктора (оправки) установить и отцентровать диск сцепления. Наложить корзину. Наживить руками болты крепления, начиная (!) с нижнего, потом верхний, затем крест-накрест. Затяжка производится в три приёма. Сначала усилием руки, затем дотянуть ключом, и последняя стадия с применением динамометрического ключа. Применение пневмо инструмента не допускается.
7) присоединить к блоку КП, равномерно затянуть болты крепления, смонтировать привод выжима сцепления.
Еще несколько советов
При работе со сцеплением необходимо применять только специальную смазку, без графита, который крайне агрессивно разъедает все пластиковые детали. Втулки, направляющие и пр.
Новые корзины имеют прижимной диск с конусом. Это сделано специально, для ускорения обкатки. Так что не пугайтесь, если на недавно установленном диске увидите только небольшую полосу рабочей поверхности (см. Фото 15)
Езда с ногой, постоянно лежащей на педали сцепления, заметно снижает ресурс и надежность всего узла. Для примера: усилие ноги в зимнем ботинке человека среднего возраста, веса и роста, составляет порядка 2кг, что благодаря системе рычагов в месте соприкосновения подшипника и корзины превращается:в 160 кг! А усилие, которое необходимо приложить к пружине для полного выжима, равняется примерно 400 кг. Дальше считайте сами
Первые 1000-2000 км категорически запрещается существенно увеличивать обороты двигателя (нажимать на газ) до полного отпускания педали сцепления.
Ещё раз напомню, что для смазывания всех деталей и узлов, имеющих отношение к работе сцепления, начиная от педали, надо применять специальную смазку, без примесей графита и меди.