Индуктивный датчик как подключить
Перейти к содержимому

Индуктивный датчик как подключить

  • автор:

Принцип работы и подключение индуктивных датчиков

Бесконтактный датчик индуктивности позиционируется как сенсор, способный реагировать на металлические предметы, оказавшиеся в его электромагнитном поле. Благодаря этому свойству индуктивных бесконтактных датчиков удается отслеживать перемещение подвижных частей оборудования и при необходимости отключать двигатель приводного механизма. Для распознавания и анализа изменений магнитного поля в их состав вводится специальный электронный узел, называемый контроллером (компаратором).

Устройство и принцип действия

Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:

  • стальной корпус с разъемом для соединительного шнура;
  • встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
  • исполнительный релейный модуль;
  • индикатор активации на светодиоде.

Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.

В соответствии с устройством прибора суть его работы описывается следующим образом:

  • перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
  • отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
  • после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
  • при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.

Каждая модель имеет собственный показатель чувствительности по перемещению — зазор смещения. Для различных образцов этот параметр варьируется в пределах от 1 микрона до 20 миллиметров.

Параметры индуктивных датчиков

Помимо диапазона срабатывания или чувствительности индуктивный датчик характеризуется следующими рабочими показателями:

  • Размер (диаметр) посадочной резьбы, у различных образцов принимающий значения от 8-ми до 30-ти мм.
  • Номинальное напряжение питания при температуре плюс 20 градусов, до 90 Вольт постоянного и до 230 Вольт – переменного токов.
  • Общая длина корпуса — ее значение зависит от рабочего напряжения.

Последний показатель у различных образцов может варьироваться в значительных пределах.

Для чувствительной или активной зоны прибора вводится еще один параметр, называемый гарантированным пределом срабатывания. Его нижняя граница равна нулю, а верхняя составляет 80 процентов от номинального значения. Этот показатель иногда называют поправочным коэффициентом рабочего зазора.

Не менее важный показатель функциональности чувствительного прибора – количество соединительных проводов в разъеме. Обычно их насчитывается два или три: два питающих и один для активации схемы. Однако возможны варианты подключения, при обустройстве которых используются четыре или пять контактных точек. Подобные образцы кроме двух питающих проводников содержат два выхода на нагрузку. При этом пятый проводник используется для выбора режима работы самого устройства.

Виды выходов и способы подключения

Для оценки действия чувствительного прибора вводится особая характеристика, оцениваемая по состоянию полярности его выходных параметров. В соответствии с общепринятым обозначением полупроводниковых элементов (транзисторов), входящих в состав электронной схемы датчика, эти выходы называются «PNP» и «NPN».

Отличие этих наименований состоит в том, что они обозначают различные полярности (полюса) источника питания чувствительных приборов. PNP транзисторы коммутируют его положительный выход, а NPN – отрицательный. Нагрузкой выходных схем чаще всего является управляющий микропроцессор.

В зависимости от схемы управления контроллером индуктивные датчики обозначаются как HO (нормально открытые) или HЗ – с нормально закрытым входом.

Вариант с NPN транзистором – наиболее распространенный способ включения датчика, поскольку согласно стандартным схемным решениям отрицательный провод делается общим для всех компонентов. В этом случае входы микропроцессоров и других контролирующих устройств активируются положительным напряжением.

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов

На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Погрешности датчиков

Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.

Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.

Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.

Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.

Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов. При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции.

Для индуктивных и емкостных датчиков характерны режимы работы со многими факторами влияния, определяемыми конкретными условиями эксплуатации. Именно поэтому выбор подходящих для данной марки прибора чувствительности и набора выходных параметров является определяющим при его использовании в качестве конечного выключателя.

Индуктивные датчики: назначение и принцип работы, устройство индуктивного датчика

Различного типа датчики сегодня широко применяются в промышленности. Без них ни один технологический процесс не обходится. Существует несколько их видов, нас же в этой статье будет интересовать индуктивный датчик. Поэтому разберемся, для чего он необходим, где применяется, его устройство и принцип работы.

Бесконтактные индуктивные датчики

Бесконтактные индуктивные датчики

По сути, датчик данного типа – это прибор, принцип работы которого основан на изменениях индуктивности катушки и сердечника. Кстати, отсюда и само название. Изменения индукции происходят из-за того, что в магнитное поле катушки проникает металлический предмет, изменяя его. А соответственно и изменяется схема подключения, в которой основную роль играет компаратор. Он при изменении индукции подает сигнал на реле или конечный транзистор (выключатель), что приводит к отключению подачи электрического тока.

Поэтому основное предназначение данного прибора – это измерять перемещение части оборудования. И при превышении пределов проходимости отключать его. При этом у датчиков есть свои пределы перемещения, которые варьируются в диапазоне от 1 микрона до 20 миллиметров. Кстати, именно поэтому этот прибор называют и индуктивным датчиком положения.

Достоинства и недостатки

Начнем с достоинств:

  • Простота конструкции, достаточно высокая его надежность. Полное отсутствие скользящих контактов, которые быстро выходят из строя.
  • Можно использовать для подключения в электрические сети с промышленной частотой.
  • Высокая чувствительность.
  • Может выдерживать большую выходную мощность.

Устройство индуктивного датчика

Устройство индуктивного датчика
Недостатки:

  • Напряжение и точность работы датчика взаимосвязаны, поэтому нестабильное напряжение в сети становится причиной разброса пределов реагирования.

Характеристика индуктивных преобразователей

Индуктивный датчик или бесконтактной системы зажигания представляет собой бесконтактное устройство, предназначенное для контроля положения того или иного объекта, выполненного из металла. Это важно, поскольку девайс может проявлять чувствительность только к металлу.

Функции и принцип действия

Принцип действия девайса основан на изменении амплитуды колебаний генераторного устройства, встроенного в контроллер, при внесении в активную зону определенного металлического объекта. Соответственно, применение девайса возможно только с такими типами объектов. При подаче напряжения на конечный выключатель, который находится в зоне чувствительности, появляется магнитное поле. Это поле способствует образованию вихревых токов, влияние которых отражается на изменении амплитуды колебаний генераторного устройства.

В итоге такие преобразования способствуют появлению аналогового выходного импульса, значение которого может быть разным в зависимости от расстояния между контроллером и объектом. Индуктивный датчик перемещения играет очень важную роль для узлов, которые используются для отслеживания изменения места расположения металлических объектов. Благодаря контроллеру определяется, правильно ли расположен тот или иной объект или нет. В том случае, если предмет находится не там, где нужно, система управления должна будет предпринять все необходимые действия для того, чтобы обеспечить нормальную работу устройства.

Что касается устройства контроллера, то девайс состоит из следующих элементов:

  1. Генераторный узел, предназначенный для образования электромагнитного поля, которое, в свою очередь, используется для создания зоны активности с объектом.
  2. Усилительное устройство. Используется для повышения значения амплитуды импульса, чтобы сигнал мог достигнуть нужного параметра.
  3. Триггер Шмитта. Этот элемент предназначен для обеспечения гистертезиса при переключении девайса.
  4. Диодный элемент, который свидетельствует о состоянии контроллера. Также светодиод позволяет обеспечить наиболее оптимальный контроль функционирования девайса и указать на оперативность настройки.
  5. Следующий элемент — компаунд. Его предназначение заключается в обеспечении защиты девайса от попадания влаги внутрь корпуса, а также грязи и пыли, что может привести к его поломке.
  6. Сам корпус. Корпус контроллера предназначен для обеспечения установки девайса, а также его защиты от всевозможных механических повреждений. Как правило, корпус выполняется из латуни либо полиамида, а также он оснащается всеми необходимыми фиксаторами для крепления (автор видео — канал Lty D).

Типы контроллеров

Системы с индуктивным датчиком могут использовать разные устройства, которые отличаются между собой по следующим параметрам:

  1. Конструкция девайса, а также тип корпуса, который может быть прямоугольным либо цилиндрическим. Что касается материала, из которого выполняется сам корпус, то он может быть либо металлическим, либо пластмассовым.
  2. Если речь идет о цилиндрических деталях, то они могут иметь разные размеры корпуса. Как правило, диаметры корпуса составляют 12 и 18 мм, но можно найти и другие девайсы- 4, 8, 22 мм и т.д.
  3. Следующий параметр — рабочий люфт девайса, составляющий расстояние до стальной пластины контроллера. Для небольших по размерам контроллеров этот показатель составляет от 0 до 2 мм, для контроллеров, диаметр которых составляет 12 и 18 мм, рабочий зазор должен быть 4 и 8 мм соответственно.
  4. Число проводов для подключения к бортовой сети. Двухпроводные устройства более удобны в плане установки, однако они чувствительно относятся к нагрузке — при слишком высоком или низком сопротивлении их работа может быть нарушена. Трехпроводные детали на сегодняшний день считаются самыми распространенными, в данном случае два контакта используется для питания, а еще один — для нагрузки. Есть также пяти- и четырехпроводные регуляторы, в которых пятый контакт используется для выбора режима функционирования.
  5. Еще один параметр, по которым устройства могут отличаться, заключается в различии полярности. Релейные датчики позволяют коммутировать нужное значение напряжения или один из контактов питания. В транзисторных датчиках типа PNP на выходе устанавливается специальный транзисторный элемент, позволяющий коммутировать плюсовой выход. Что касается минуса, то в данном случае он подключен постоянно. Также есть транзисторные устройства NPN, в данном случае постоянно запитан плюс, а мину коммутируется транзисторным элементом.

Фотогалерея «Схемы подключения»


1. Схема регулятора приближения авто


2. Схема работы индуктивного ДПКВ

Достоинства и недостатки

Индуктивный датчик вращающихся оборотов (к примеру, ДПКВ) или другого типа, как и любое устройство, может иметь свои достоинства и недостатки. Предлагаем с ними ознакомиться.

Начнем с преимуществ:

  1. Во-первых, такие регуляторы характеризуются достаточно простой конструкцией, что позволяет обеспечить высокую надежность их работы. Конструктивно в элементе отсутствуют скользящие контакты, благодаря чему обеспечивается надежная работа датчика, так как контакты не изнашиваются и не выходят из строя.
  2. При необходимости такой регулятор можно своими руками подключить к электрической сети с промышленной частотой.
  3. Повышенная чувствительность регулятора, что позволяет обеспечить его наиболее эффективную и бесперебойную работу.
  4. При необходимости такие приборы могут работать в условиях высоких выходных мощностей.

Что касается недостатков:

  1. Нелинейные значения могут привести к появлению погрешностей, что связано с использованием принципа индуктивного преобразования.
  2. Правильная работа детали возможна при определенной температуре. Если температура не будет соответствовать нормированному диапазону, это может привести к появлению больших погрешностей.
  3. Появлению погрешностей могут способствовать и образование электромагнитного поля вне датчика.

Цена вопроса

Стоимость товара зависит от многих характеристик, в частности, области применения. В среднем цены на индуктивные регуляторы начинаются от 500 рублей и выше.

Параметры индуктивного датчика

Один из параметров уже описывался выше – это диапазон срабатывания. Хотя, как утверждают специалисты, он не является важным, но именно по нему и делают выбор. Все дело в том, что в паспорте изделия указываются номинальные параметры напряжения при работе прибора в температурном режиме +20С. Постоянное напряжение составляет 24 вольт, переменное – 230 вольт. Как вы понимаете, в таких условиях индукционный датчик обычно не работает, а если и работает, то редко. При этом в качестве объекта, который будет изменять индуктивность катушки прибора, должна выступать стальная пластина, ее ширина должна быть равна трем диапазонам срабатывания и толщиною 1 мм.

Что следует знать о работе датчика?

Индуктивный датчик положения — это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:

  1. Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
  2. Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
  3. Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
  4. Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.

Способ подключения

Существует несколько разновидностей индуктивных датчиков, которые имеют разное количество проводов подключения.

  • Двухпроводные. Включаются прямо в цепь токовой нагрузки. Самый простой вариант, но очень капризный. Для него нужен номинальное сопротивление нагрузке. Если он снижается или увеличивается, прибор начинает работать некорректно. При подключении к сети постоянного тока, необходимо соблюдать полярность.
  • Трехпроводной. Это самые распространенные индукционные датчики, в которых два провода подключаются к напряжению, один к нагрузке.
  • Четырех-, пятипроводные. В них два провода подключаются к нагрузке. Пятый провод – это возможность выбора режима работы.

Принцип действия

бесконтактные индуктивные датчики

Всё базируется на изменении амплитуды колебаний используемого в индуктивном датчике генератора, когда в активную зону вносится предмет определённого размера из металлического, магнитного и ферро-магнитного материала. Так что использование может быть реализовано только с этими типами. Когда подаётся питание на конечный выключатель, расположенный в его области чувствительности, то образуется магнитное поле. Оно наводит в материале вихревые токи, влияние которых меняет амплитуду колебаний генератора. В конечном результате таких преобразований получается аналоговый выходной сигнал. Его величина меняется и зависит от расстояния между контролируемым предметом и датчиком. Триггер Шмитта превращает аналоговый сигнал в логический. Индуктивный датчик перемещения играет важную роль для механизмов, которые отслеживают изменение местоположения металлических деталей. Встретить подобные устройства вы можете в автомобильных конвейерах. Индуктивный датчик положения поможет определить, расположен ли предмет так, как должен. Если ответ отрицательный, то будут предприняты действия, предусмотренные программой, чтобы всё было так, как необходимо для полноценной и правильной работы конвейера.

Цветовая маркировка выводов

Все, что связано с электрическими сетями, особенно проводниками, обязательно обозначается цветовой маркировкой. Делается это для удобства проведения монтажа и обслуживания. Индуктивный датчик этого также не избежал. В нем выходы обозначены определенными стандартными цветами:

  • Минус – синий цвет.
  • Плюс – красный.
  • Выход – черный.
  • Бывает и второй выход, он белого цвета, который может быть и входом в систему управления. Об этом производитель обязательно информирует в инструкции.

Разновидности индукционных датчиков

Разновидности индукционных датчиков
И последнее – это конструктивные особенности, которые касаются корпуса датчика. Он может иметь цилиндрическую или прямоугольную форму. Изготавливается из металлических сплавов или пластика. Чаще всего в промышленности используются цилиндрические приборы диаметром 12 или 18 мм. Хотя есть в этой размерной линейке и другие параметры: 4, 8, 22 и 30 мм.

Структура

Индуктивные бесконтактные выключатели могут состоять из следующих основных узлов:

  1. Генератор
    создает электромагнитное поле взаимодействия с объектом.
  2. Триггер Шмитта
    обеспечивает гистерезис при переключении.
  3. Усилитель
    увеличивает амплитуду сигнала до необходимого значения.
  4. Светодиодный индикатор
    показывает состояние выключателя, обеспечивает контроль работоспособности, оперативность настройки.
  5. Компаунд
    обеспечивает необходимую степень защиты от проникновения твердых частиц и воды.
  6. Корпус
    обеспечивает монтаж датчика, защищает от механических воздействий. Выполняется из латуни или полиамида, комплектуется крепежными изделиями.

Типы датчиков

Итак, что вообще такое датчик. Датчик — это устройство, которое выдает определенный сигнал при наступлении какого-либо определенного события. Иначе говоря, датчик при определенном условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал. Датчики могут называться также сенсорами или инициаторами.

Оптический датчик отслеживает перемещение деталей по конвейеру

Датчиков великое множество. Перечислю лишь те разновидности, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия — датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут «proximity sensor». Фактически это — датчик металла.

Оптические. Другие названия — фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются «датчик освещенности». Разновидность оптических датчиков — инфракрасные датчики движения, которые срабатывают на изменение температуры в зоне действия.

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Если этот датчик дискретный, то принцип работы очень прост. Давления воздуха или масла нет — датчик выдает сигнал на контроллер или рвет аварийную цепь. Может быть датчик для измерения давления с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Пример работы концевых выключателей — нижний датчик активирован

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него надавливает объект (активатор).

Итак, мы выяснили, что воздействие (активация) может быть любым, а реакции может быть две — дискретный либо аналоговый сигнал. Поэтому, все датчики можно считать одинаковыми, различия могут быть только в способе активации (принципе действия) и схеме включения.

Для примера рассмотрим индуктивный датчик, поскольку он наиболее распространен.

Основные характеристики и схемы подключения индуктивного датчика

номинальное расстояние срабатывания – расстояние, на котором происходит переключение сигнала датчика. Номинальное расстояние устанавливается с использованием в качестве объекта стальной пластины шириной не менее трёх номинальных расстояний срабатывания и толщиной 1 мм при температуре +20 °С и номинальном напряжении питания (стандартно 24 В постоянного либо 230 В переменного тока). На практике за основу при выборе датчика берутся два показателя расстояния срабатывания:

— эффективный – отличается от номинального на ±10% при расширении температурного диапазона на +18…+28°С и номинальном напряжении;

— полезный – отличается от эффективного на ±10% при температуре +25…+70°С и напряжении от 85% до 110% от номинального.

гарантированный (рабочий) зазор – расстояние, на котором гарантированно происходит срабатывание датчика независимо от внешних условий (пока таковые находятся в допустимых пределах). Составляет от 0 до 81% от номинального диапазона срабатывания.

поправочный коэффициент рабочего зазора – позволяет определить, на каком расстоянии произойдёт срабатывание датчика, в зависимости от металла, из которого изготовлен объект.

— гистерезис и повторяемость – разница между расстоянием, на котором при приближении объекта происходит срабатывание датчика, и расстоянием, на котором при отдалении объекта датчик перестаёт «видеть» объект, т. е. конечными позициями работы датчика. Стандартно величина гистерезиса составляет порядка 15-20% от эффективного диапазона срабатывания.

— частота срабатывания – наибольшая величина частоты переключения выходного сигнала датчика. Для промышленных исполнений это значение варьируется от 15 до 5000 Гц.

— степень защиты – для большинства датчиков индуктивного типа это IP67 либо IP68, однако встречаются отдельные исполнения с защитой IP69K для применений в зонах с особыми требованиями.

— температура окружающей среды – диапазон температур, при которых датчик сохраняет работоспособность и характеристики. Продолжительное пребывание датчика в условиях, выходящих за рамки этого диапазона, может повлечь за собой его нестабильную работу или преждевременный отказ.

Среди второстепенных параметров, которые также присущи и оптическим и емкостным датчикам стоит выделить:

— напряжение питания, обычно выраженное в диапазонах 10…30, 10…60, 5…60 В постоянного либо 98…253 В переменного тока; сейчас выпускаются также версии, способные работать в сетях как постоянного, так и переменного тока;

— номинальный ток нагрузки – обычно не более 200 мА, но существуют версии с током нагрузки до 500 мА;

— задержка готовности (включения) – среднее время между подачей питания на датчик и готовностью его к работе.

Подключение датчиков производится разным количеством проводов в зависимости от схемы подключения. Существует несколько основных вариантов схемы:

Индуктивный датчик схема подключения

— двухпроводная – датчик включается непосредственно в цепь нагрузки. При всей простоте данного способа он имеет ряд жёстких требований к цепи, основным из которых является соответствие сопротивления цепи нагрузки номинальному. В случае, если сопротивление больше или меньше номинального, датчик работает некорректно. Кроме того, при подключении датчика в цепь постоянного тока необходимо соблюдать полярность подключения. В отдельных случаях при двухпроводной схеме датчик может также обладать третьим выходом – заземления.

— трёхпроводная – наиболее распространённая схема, при которой два провода датчика используются для подключения питания, а третий, сигнальный, идёт на нагрузку.

— четырёхпроводная – вариант трёхпроводной схемы с дополнительным проводом, который либо подключается к нагрузке как второй сигнальный вывод, либо используется для выбора режима работы датчика как внешний вход.

— пятипроводная – наиболее редкая; наряду с двумя проводами для подключения питания и двумя сигнальными выводами имеет один внешний вход для выбора режима работы датчика.

Как и любое другое электрооборудование, индуктивный датчик подчиняется правилам маркировки кабельных выводов. В общем случае выводы датчика маркируются следующим образом:

— коричневый/красный – плюс питания

— синий/голубой – минус питания

— чёрный – основной выход

— белый – второй выход либо вход для настройки

— серый (или иной цвет) – вход для настройки

Стандартизированная цветовая маркировка обеспечивает удобный и быстрый монтаж датчиков, а также их оперативную замену в случае необходимости.

В случае, если датчик имеет разъёмное подключение, идентичная цветовая маркировка присуща большинству стандартных кабелей с ответным разъёмом, используемых для подключения таких датчиков.

По всем вопросам обращайтесь по телефонам или e-mail .

Основные характеристики и схемы подключения индуктивного датчика Основные характеристики и схемы подключения индуктивного датчика

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *