Вибрация на рабочем месте: измерения и влияние на работника
Вибрация представляет собой один из производственных факторов, которые при превышении определенного уровня могут оказать серьезное негативное влияние на здоровье работника. При этом, однако, вибрация — это весьма распространенное явление на самых различных типах производств. Поэтому для работодателя крайне важным является определение действительного уровня вибрации на рабочих местах сотрудников с тем, чтобы установить, какие именно меры следует предпринять для снижения интенсивности ее воздействия.
Нормируемые виды вибрации
Как и другие производственные факторы, которые представляют потенциальную опасность для людей, работающих под их влиянием, допустимый уровень вибрации на производстве в нашей стране регулируется законодательно. В частности, основным нормативно-правовым актом, устанавливающим ключевые нормативы в этой сфере, являются санитарные нормы СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий». Этот документ выделяет несколько оснований для классификации типов вибрации.
По типу передачи | По источнику | По направленности импульса | По ширине спектра | По составу действующих частот | По продолжительности действия |
---|---|---|---|---|---|
Общая, через тело при сидении или стоянии | Локальная, от механического инструмента с ручным использованием | Локальная по осям | Узкополосная | Низкие частоты (1-4 Гц для общих, 8-16 Гц для локальных колебаний) | Постоянная |
Локальная, от немеханического инструмента с ручным использованием | |||||
I категории, транспортная при передвижении | Средние частоты (8-16 Гц для общих, 31,5-63 Гц для локальных колебаний) | ||||
Локальная, через руки, прикасающиеся к источнику | II категории, транспортно-технологическая при работе с передвижением | Общая по осям | Широкополосная | Временная | |
III категории, технологическая при работе с оборудованием | Высокие частоты (31,5-63 Гц для общих, 125-1000 Гц для локальных колебаний) | ||||
Общая в жилых зданиях от внешней среды | |||||
Общая в жилых зданиях от внутренних сетей и оборудования |
Измерение вибрации
Для каждого из типов вибрации устанавливается собственный уровень максимальных допустимых значений в зависимости от типа измерения, который необходимо использовать в каждом конкретном случае. В частности, на практике для установления фактической интенсивности вибрации на рабочем месте применяются следующие типы измерений:
- гигиеническое определение уровня вибрации, устанавливающее наличие или отсутствие вредного воздействия данного фактора на здоровье работников;
- частотное исследование, определяющее нормативные уровни виброскорости и виброускорения;
- определение допустимого частотного диапазона на основании частот для октавных полос;
- интегральный анализ, применяющий корректированные показатели виброскорости и виброускорения.
Все перечисленные виды измерений проводятся специализированными организациями, имеющими соответствующее оборудование и персонал с необходимым уровнем квалификации. При этом процедура измерения должна осуществляться в строгом соответствии с ГОСТ 31319-2006 «Измерение общей вибрации и оценка ее воздействия на человека».
Снижение негативного воздействия вибрации на человека
Статья 27 Федерального закона от 30.03.1999г. № 52-ФЗ «О санитарно-эпидемиологическом благополучии населения» требует, чтобы процесс осуществления трудовой деятельности, в ходе которого сотрудник подвергается воздействию вибрации, не оказывал вредного влияния на его здоровье. Это означает, что работодателю необходимо принять все возможные меры для недопущения такого влияния.
В первую очередь необходимо проследить, чтобы по ключевым анализируемым параметрам уровень интенсивности вибрации не превышал установленных норм. При этом различные отрасли промышленности и сферы экономики в лице контролирующих органов устанавливают разные максимально допустимые уровни воздействия этого фактора. Поэтому работодателю, который планирует выяснить, соответствует ли уровень вибрации на его производстве допустимым пределам, необходимо проконсультироваться с соответствующим нормативно-правовым актом.
Помимо этого, работодатель обязан осуществлять мероприятия организационного характера для снижения отрицательного воздействия вибрации на сотрудников. К числу таких мер можно отнести:
Единицы измерения вибрации
Основными параметрами вибрации, измеряемыми для оценки технического состояния динамических машин в соответствии с ГОСТ ИСО 10816-1, являются виброскорость, виброперемещение и виброускорение. Всем известно, что в системе СИ в качестве единицы измерения скорости принимается [м/с], перемещения – [м] и ускорения – [м/с2]. В случае вибрации динамических машин, исходя из существующих порядков величин данных параметров вибрации, в качестве единиц измерения вибрации принимаются:
- виброперемещения (размах) – [мкм] (микрон);
- виброскорости (СКЗ или амплитуда (пик)) – [мм/с] или [м/с];
- виброускорения (СКЗ или амплитуда (пик)) – [м/с 2 ] или g, где g – ускорение свободного падения (g=9,81 м/с 2 ).
Виброускорение, виброскорость и виброперемещение являются взаимосвязанными величинами и, к примеру, зная функцию виброперемещения, можно однократным дифференцированием перейти к функции виброскорости, а двухкратным дифференцированием – к функции виброускорения. Верно и обратное: однократным интегрированием функции виброускорения получим функцию виброскорости, а двухкратным интегрированием – функцию виброперемещения.
На практике процесс дифференцирования сопровождается большим ростом шумов, поэтому практически не применяется. А интегрирование, наоборот, очень точно передает форму сигнала и очень легко реализуется с помощью простых электрических цепей. Именно этим обстоятельством обусловлено широкое применение акселерометров (измерителей виброускорения) в качестве основных датчиков вибрации.
Виброскорость (V — velocity), виброускорени (А — acceleration), виброперемещение (D — displacement) связаны следующими соотношениями:
Как можно видеть из вышеприведенных формул, величины виброперемещения значительны по величине в низкочастотной области, а виброускорения – в высокочастотной области при ослаблении в низкочастотной. Это очень хорошо просматривается при сравнении одного и того же сигнала, сделанного виброанализатором BALTECH VP-3470-Ex, на графиках виброперемещения, виброускорения и виброскорости (см. рис.1):
Виброперемещение | Виброскорость | Виброускорение |
Рис.1 Спектры виброперемещения (S), виброскорости (V) и виброускорения (A)
Из рис.1 можно видеть, что при пользовании графиком виброперемещения практически отсутствует полезная информация в высокочастотной области, аналогично и с графиком виброускорения: при хорошей информативности в области высоких частот и минимуме информации в низкочастотной области. График же виброскорости имеет более или менее равномерный характер и наиболее пригоден для вибродиагностики большинства стандартных машин. Однако встречаются ситуации, когда более равномерным может быть график виброперемещения или виброускорения и, в общем случае, всегда выбирают тот параметр вибрации, который имеет наиболее равномерный характер во всем частотном диапазоне.
В связи с большим разбросом возможных величин любого стандартного параметра вибрации (виброскорости, виброускорения, виброперемещения), в качестве единицы измерения вибрации также принимается децибел (дБ), который определяется как:
L= 20 lg (U/Uo), где L – уровень сигнала в дБ; U — уровень вибрации в обычных единицах ускорения, скорости или смещения; Uo — опорный уровень, соответствующий 0 дБ. Введение децибела в качестве единицы измерения вибрации хорошо иллюстрируется таблицей 1 соответствия изменения уровня в децибелах с соответствующим изменением амплитуд параметра вибрации:
Таблица 1. Изменение уровня вибрации в децибелах
В качестве примера, приводим Таблицу 2 соответствия виброскорости (в дБ) с ее амплитудой в стандартных единицах (мм/с):
Чтобы легко оперировать единицами измерения вибрации, советуем вам пройти обучение на курсе повышения квалификации ТОР-103 «Основы вибродиагностики. Единицы измерения вибрации» в Учебном центре нашей компании в Санкт-Петербурге, Астане или Любеке (Германия).
Виброускорение, виброскорость и виброперемещение
Для количественного описания вибрации вращающегося оборудования и в диагностических целях используют виброускорение, виброскорость и виброперемещение.
Виброускорение
Виброускорение – это значение вибрации, прямо связанное с силой, вызвавшей вибрацию. Виброускорение характеризует то силовое динамическое взаимодействие элементов внутри агрегата, которое вызвало данную вибрацию. Обычно отображается амплитудой (Пик, Peak) — максимальное по модулю значение ускорения в сигнале. Применение виброускорения теоретически идеально, т. к. пъезодатчик (акселерометр) измеряет именно ускорение и его не нужно специально преобразовывать. Недостатком является то, что для него нет практических разработок по нормам и пороговым уровням, нет общепринятого физического и спектрального толкования особенностей проявления виброускорения. Успешно применяется при диагностике дефектов, имеющих ударную природу — в подшипниках качения, редукторах.
Виброускорение измеряется в:
- метрах на секунду в квадрате [м/сек 2 ]
- G, где 1G = 9,81 м/сек 2
- децибелах, должен быть указан уровень 0 дБ. Если не указан, то берётся значение 10 -6 м/сек 2 (Стандарт ISO 1683:2015 и ГОСТ Р ИСО 13373-2-2009)
Как перевести виброускорение (м/с 2 ) в дБ ?
Для стандартного уровня 0 дБ = 10 -6 м/сек 2 :
AdB = 20 * lg10(A) + 120
AdB – виброускорение в децибелах
lg10 – десятичный логарифм (логарифм по основанию 10)
A – виброускорение в м/с 2
120 дБ – уровень 1 м/с 2
Как перевести дБ в виброускорение (м/с 2 ) ?
A = 10^((AdB-120)/20)
Например, 140 дБ = уровень 10 м/с 2 = 1 G
Виброскорость
Виброскорость – это скорость перемещения контролируемой точки оборудования во время её прецессии вдоль оси измерения.
В практике измеряется обычно не максимальное значение виброскорости, а ее среднеквадратичное значение, СКЗ (RMS). Физическая суть параметра СКЗ виброскорости состоит в равенстве энергетического воздействия на опоры машины реального вибросигнала и фиктивного постоянного, численно равного по величине СКЗ. Использование значения СКЗ обусловлено ещё и тем, что раньше измерения вибрации велись стрелочными приборами, а они все по принципу действия являются интегрирующими, и показывают именно среднеквадратичное значение переменного сигнала.
Из двух широко применяемых на практике представлений вибросигналов (виброскорость и виброперемещение) предпочтительнее использование виброскорости, так как это параметр, сразу учитывающий и перемещение контролируемой точки и энергетическое воздействие на опоры от сил, вызвавших вибрацию. Информативность виброперемещения может сравниться с информативностью виброскорости только при условии, когда дополнительно, кроме размаха колебаний, будут учтены частоты, как всего колебания, так и его отдельных составляющих. На практике сделать это весьма проблематично.
Для измерения СКЗ виброскорости используются самые простые приборы – виброметры. В более сложных приборах (виброанализаторах) также всегда присутствует режим виброметра.
Виброскорость измеряется в:
- миллиметрах на секунду [мм/сек]
- дюймов в секунду [in/s]: 1 in/s = 25,4 мм/сек
- децибелах, должен быть указан уровень 0 дБ. Если не указан, то, согласно ГОСТ 25275-82, берётся значение 5 * 10 -5 мм/сек (По международному стандарту ISO 1683:2015 и ГОСТ Р ИСО 13373-2-2009 за 0 dB берётся 10 -6 мм/сек)
Как перевести виброскорость в дБ ?
Для стандартного уровня 0 дБ = 5 * 10 -5 мм/сек:
VdB = 20 * lg10(V) + 86
VdB – виброскорость в децибелах
lg10 – десятичный логарифм (логарифм по основанию 10)
V – виброскорость в мм/с
86 дБ – уровень 1 мм/с
Ниже приведены значечения виброскорости в дБ для стандартного ряда норм вибрации. Видно, что разница между соседними значениями – 4 дБ. Это соответствует разнице в 1,58 раза.
мм/с | дБ |
45 | 119 |
28 | 115 |
18 | 111 |
11,2 | 107 |
7,1 | 103 |
4,5 | 99 |
2,8 | 95 |
1,8 | 91 |
1,12 | 87 |
0,71 | 83 |
Виброперемещение
Виброперемещение (вибросмещение, смещение) показывает максимальные границы перемещения контролируемой точки в процессе вибрации. Обычно отображается размахом (двойной амплитудой, Пик-Пик, Peak to peak). Виброперемещение – это растояние между крайними точками перемещения элемента вращающегося оборудования вдоль оси измерения.