Какой тип расходомера не показывает мгновенный расход
Перейти к содержимому

Какой тип расходомера не показывает мгновенный расход

  • автор:

Тест по КИП и А с ответами

Бирками какой формы должны маркироваться контрольные кабели КИП до 1000В?

Резьба М20х1,5 на штуцере манометра называется

Выходной сигнал термопар измеряется в

Допустимо ли подключать по трехпроводной схеме датчик термосопротивления, имеющий четыре вывода

Да, если на это есть указание изготовителя датчика

Датчик абсолютного давления на пустой трубе покажет давление

около 1 МПа около нуля

Вторичный прибор должен обеспечивать питание подключенного к нему по двухпроводной схеме датчика в случае, если

датчик имеет активный выход

датчик имеет пассивный выход

датчик не имеет автономного встроенного источника питания

В какой цвет должен быть окрашен трубопровод с природным газом?

Голубой с желтой поперечной чертой

Понижение концентрации какого газа в атмосфере рабочего пространства является аварийной ситуацией?

Трехходовые вентили используются при монтаже

датчиков расхода датчиков температуры

Какой контакт реле обозначается буквами NO?

Вывод обмотки реле

Нормально замкнутый контакт контактной группы

Нормально разомкнутый контакт контактной группы

Степень защищенности оборудования КИП от воздействия пыли и влаги обозначается символами

Какое масло следует заливать в защитные гильзы термометров?

Трансформаторное Индустриальное Моторное

Что такое шильдик? Герметизированный кабельный ввод Крепежный элемент Идентификационная табличка

Какова периодичность поверки оборудования КИП?

В соответствии с предписаниями изготовителя

В соответствии с предписаниями изготовителя, но для узлов коммерческого учета раз в год

В какой цвет окрашивают корпус кислородного манометра?

Цвет не имеет значения

Корпус кислородного манометра запрещено окрашивать Термоэлектрический преобразователь это

ртутный термометр термометр сопротивления

Подключение питающего кабеля 220В для запитки щита КИП осуществляется

к верхним губкам автоматического выключателя в щите КИП

к нижним губкам автоматического выключателя в щите КИП

место подключения определяется конструкцией щита

Разрешается ли пропаивать проволочные петельки перед монтажом под винт?

Разрешается без применения кислотосодержащих флюсов

Механическое реле давления имеет

Массовый расход воды находят, зная объемный расход и

давление и температуру

Какой тип расходомера не показывает мгновенный расход?

Атмосферное (Ратм), абсолютное (Рабс) и избыточное (Ризб) давления связаны следующей зависимостью

Что называется устойчивостью системы автоматического регулирования (САР)?

Способность САР принимать крайние значения под влиянием воздействий

Способность САР восстанавливать состояние равновесия, из которого она выводится под влиянием внешних воздействий

Способность САР изменять закон регулирования

Как подсоединяют манометры к трубопроводам с водой и паром для устранения влияния пульсаций давления на показания манометра?

С помощью соединительных демпферных трубок, снабженных кольцеобразной петлей

Как можно ближе к трубопроводу

Манометр монтируется строго горизонтально

Как изменится омическое сопротивление термометра сопротивления при увеличении температуры измеряемой среды?

Какой прибор используется для измерения влажности?

Какой параметр исполнительного механизма с электроприводом влияет на пропускную способность регулирующего клапана?

Электрическая мощность электродвигателя исполнительного механизма Частота вращения ротора электродвигателя исполнительного механизма

Рабочий ход штока

Как должна устанавливаться защитная гильза для датчика температуры в трубопровод?

Конец гильзы должен быть несколько ниже оси трубопровода

Конец гильзы должен касаться противоположной стенки трубопровода Глубина погружения гильзы не имеет значения

Типы существующих расходомеров: преимущества и недостатки

Расходомеры – это приборы, измеряющие объем или массу вещества: жидкости, газа или пара, которые проходят через сечение трубопровода в единицу времени. В быту расходомеры называют «счетчиками», но это неверно, потому что счетчик – только одна из составляющих конструкции расходомера. Особенности конструкции зависят от типа прибора. Сейчас используют 6 типов расходомеров, у каждого из которых – свои сильные и слабые стороны.

Электромагнитные расходомеры

В основе устройства электромагнитных расходомеров – закон электромагнитной индукции, известный как закон Фарадея. Когда проводящая жидкость, например вода, проходит через силовые линии магнитного поля, индуцируется электродвижущая сила. Она пропорциональна скорости движения проводника, а направление тока – перпендикулярно направлению движения проводника.

В электромагнитных расходомерах жидкость течет между полюсами магнита, создавая электродвижущую силу. Прибор измеряет напряжение между двумя электродами, рассчитывая тем самым объем проходящей через трубопровод жидкости. Это надежный и точный метод, потому что сам прибор не влияет на скорость течения жидкости, а за счет отсутствия движущихся частей оборудование долговечное.

Преимущества электромагнитных расходомеров:

  • Умеренная стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Большой динамический диапазон измерений.
  • На работу прибора влияют магнитные и проводящие осадки.

Электромагнитный расходомер

Принцип работы электромагнитного расходомера

Ультразвуковые расходомеры

В конструкции расходомеров есть передатчик ультразвуковых сигналов (УЗС). Когда жидкость движется по трубопроводу, происходит снос ультразвуковой волны. Из-за этого меняется время, за которое сигнал от передатчика достигает приемника. Время прохождения увеличивается против потока жидкости и уменьшается, если ультразвуковой сигнал идет по направлению потока. Ультразвуковые расходомеры рассчитывают объемный расход жидкости на основе разности времени прохождения УЗС по течению потока и против него – эта разность пропорциональна скорости движения и объему воды.

Достоинства ультразвуковых расходомеров:

  • Невысокая стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Средний динамический диапазон измерений.
  • Возможность монтажа на трубопроводы большого диаметра.
  • Чувствительность измерений к отражающим и поглощающим ультразвук осадкам.
  • Чувствительность к вибрациям.
  • Чувствительность к перекосам потока для однолучевых расходомеров.

Расходомеры перепада давления

Принцип действия этого типа расходомеров основан на измерении перепадов давления, которые возникают, когда поток жидкости, газа или пара проходит через шайбу, сопло или другое сужающее устройство. Скорость потока в этом месте меняется, давление возрастает: чем выше скорость потока, тем больший расход.

Преимущества:

  • Отсутствие движущихся частей.
  • Механические препятствия в сечении: шайба или сопло.
  • Малый динамический диапазон измерений.
  • Чувствительность к любым осадкам на сужающем устройстве.

Вихревые расходомеры

Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.

Преимущества:

  • Отсутствие движущихся частей.
  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Температурная чувствительность.
  • Неустойчивость характеристик при осадках на теле обтекания.
  • Влияние вибраций на результаты измерений.

Вихревой расходомер

Принцип работы вихревого расходомера

Тахометрические расходомеры

Тахометрические расходомеры измеряют скорость вращения, количество оборотов крыльчатки или турбины в потоке воды, газа или пара. Принцип действия не меняется в зависимости от того, установлена ли в приборе крыльчатка или турбина; разница только в том, что ось вращения крыльчатки находится перпендикулярно движению потока, а турбины – параллельно потоку жидкости или газа.

Преимущества:

  • Невысокая стоимость.
  • Работают без источника питания.
  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Неустойчивость измерений.
  • Невысокая надежность.
  • Примеси и посторонние предметы в воде влияют на результаты измерений.
  • Небольшой срок эксплуатации.

Тахометрический расходомер

Принцип работы тахометрического расходомера

Кориолисовы расходомеры

Принцип действия этих расходомеров опирается на эффект Кориолиса: изменение фаз механических колебаний U-образных трубок, по которым движется жидкость, газ или пар. Сдвиг фаз зависит от массового расхода. Сила Кориолиса, которая воздействует на стенки колеблющейся трубки, меняется под напором воды или пара.

Преимущества:

  • Прямое измерение массового расхода.
  • Осадки не влияют на измерения.
  • Нет препятствий во внутреннем сечении.
  • Измерение расхода жидкостей не зависит от их электрической проводимости.
  • Высокая стоимость.
  • Строгие требования к технологии изготовления.
  • Влияние вибраций на метрологические характеристики.

Сравнив достоинства и недостатки разных видов оборудования, несложно понять, почему самыми востребованными остаются электромагнитные расходомеры: они недорогие, точные и практичные. Через каталог компании «Интелприбор» вы можете заказать измерительные модули высокого качества. Мы не только поможем выбрать оборудование, но также установим его и обеспечим техобслуживание.

Подпишитесь на нашу рассылку,
и станьте одним из первых,
кто будет в курсе всех
наших новостей!

Руководство по выбору расходомера. Часть 1

В данной части руководства рассмотрим применимость расходомеров с кориолисовым, ультразвуковым, электромагнитным и вихревым методом измерения в зависимости от характеристик измеряемой среды.

Определение метода измерения расхода

В промышленности на узлах технического и коммерческого учета энергоресурсов, в системах регулирования и дозирования в настоящее время чаще всего применяют ультразвуковые, электромагнитные, вихревые и кориолисовые расходомеры. Учитывая многообразие измеряемых сред и возникающих измерительных задач, выбор подходящего по своим характеристикам измерителя расхода является достаточно сложной задачей. Даже если выбирать только среди указанных четырех типов расходомеров.

Цель данного руководства – дать начальное представление о пригодности каждого из четырех методов измерения расхода для решения имеющейся измерительной задачи. А также существующих ограничениях и особенностях применения расходомеров каждого типа.

К основным (базовым) критериям выбора типа измерителя расхода относятся:

  1. Характеристики измеряемой среды (физико-химические свойства);
  2. Необходимость измерения реверсивных потоков или массового расхода;
  3. Динамический диапазон измерения;
  4. Точность измерения, межповерочный интервал и наличие возможности поверки расходомера без его демонтажа;
  5. Надежность, эксплуатационные характеристики.

В данной части руководства рассмотрим применимость расходомеров с кориолисовым, ультразвуковым, электромагнитным и вихревым методом измерения в зависимости от характеристик измеряемой среды.

Физико-химические свойства измеряемой среды играют определяющее значение при выборе метода измерения расхода и конструктивного исполнения расходомера. К физико-химическим свойствам среды относятся такие параметры как агрегатное состояние среды, ее температура и давление (номинальные, минимальные и максимальные), вязкость и химическая активность, наличие в ней примесей, склонность к образованию отложений и т.п.

Определение метода измерения расхода в зависимости от характеристик измеряемой среды

Так электромагнитные расходомеры предназначены только для измерения электропроводящих жидкостей, растворов и пульпы. Измерение расхода химически обессоленной воды, пара и газов невозможно с помощью расходомеров данного типа. При выборе конкретной модификации электромагнитного расходомера особое внимание нужно уделить материалу футеровки измерительной части, так как именно от нее зависит температурная и коррозионная стойкость измерительной части датчика. Неправильный выбор материала футеровки может привести к ее вспучиванию, отслоению и как результат, к недостоверным показаниям или выходу расходомера из строя.

Основные материалы, применяемые для футеровки измерительной части электромагнитных расходомеров, приведены в таблице 1.

Материал футеровки Область применения Диапазон температур измеряемой среды
PFA (перфторалоксид) Превосходная стойкость к воздействию высоких температур, коррозионно-активных веществ и механическим напряжениям. Низкая устойчивость к истиранию. -29…+177°С
PTFE (Политетрафторэтилен) Более экономичный в сравнении с PFA. Отличная стойкость к воздействию химикатов, но меньшая износостойкость по сравнению с PFA. Хорошая размерная стабильность. -29…+177°С
ETFE (этилентетрафторэтилен) Высокая прочность на разрыв и ударопрочность. Характеристики стойкости к воздействию химикатов и к износу аналогичные PTFE, но максимальная температура ниже. -29…+149°С
Полиуретан,
твердая резина
Обычно используется для чистой воды (без химикатов). Износостойкость к шламу, содержащему мелкие частицы. -18…+60°С
Неопрен Обычно используется для пресной и морской воды. Износостойкость к шламу, содержащему мелкие частицы. -18…+85°С
Linatex Обычно используется для горного шлама, высокая стойкость к износу от обломков породы. — 18…+70°С

В зависимости от производителя расходомеров и способа нанесения футеровки, температурные и механические характеристики могут незначительно отличаться.

Электромагнитные расходомеры, в зависимости от конструктивного исполнения, способны работать в диапазоне температур измеряемой среды от -30 до +180°С, давлении до 16 МПа и выше, вязкости измеряемой среды от 0,1 до 100 000 мПа*с. Следует учитывать, что некоторые электромагнитные расходомеры, в зависимости от материала футеровки, могут иметь ограничения на установку на всасывающем трубопроводе насосов, так как понижение давления может привести к отслаиванию футеровки.

Определение метода измерения расхода в зависимости от характеристик измеряемой среды

Вихревые расходомеры являются самыми «всеядными» в плане измеряемых сред. Расход холодных и горячих жидкостей, независимо от их электропроводящих свойств, насыщенного и перегретого пара, природного и технических газов может быть измерен с помощью расходомеров данного типа. Но и у них есть свои ограничения связанные с используемым методом измерения: вихревые датчики расхода не предназначены для измерения вязких и загрязненных сред и сред склонных к образованию отложений. Кроме того расходомеры данного типа наиболее чувствительны к турбулентности и неоднородности потока и вибрации трубопровода.

Учитывая, что измерительная часть вихревых расходомеров выполнена из металла, без применения полимерных футеровок, данный тип датчиков расхода может использоваться для измерения с температурой от -40 до +250°С. Давление среды обычно не должно превышать 10 МПа, максимальная вязкость ограничена величиной примерно 10 мПа*с.

При измерении высокотемпературных сред для защиты электроники электронного блока расходомера от перегрева и обеспечения удобной и безопасной их эксплуатации рекомендуется использовать разнесенное исполнение (независимо от типа расходомера и метода измерения). При разнесенном исполнении измерительная часть расходомера располагается на трубе, а блок электроники и индикации на некотором удалении от нее, в удобном для обслуживания месте с нормальным температурным режимом.

Определение метода измерения расхода в зависимости от характеристик измеряемой среды

Ультразвуковые расходомеры предназначены для измерения расходов чистых (гомогенных) и загрязненный (гетерогенных) жидкостей и газов в зависимости от метода измерения. Для измерения чистых однородных сред следует выбирать ультразвуковой расходомер с время-импульсным методом измерения. Для измерения загрязненный многофазных сред следует выбирать расходомер с доплеровским методом измерения.

Ультразвуковые расходомеры имеют наиболее широкий диапазон применения по температуре и давлению измеряемой среды. Так для расходомеров с врезными датчиками температура измеряемой среды может быть в пределах от -200 до +200°С, давление до 4 МПа, вязкость среды от 0 до 350 мПа*с. Расходомеры с накладными датчиками рассчитаны на температуру измеряемой среды от -40 до +120°С и не имеют ограничений по максимальному давлению (величина максимального давления ограничивается только прочностными характеристиками самого трубопровода). Вязкость измеряемой среды может быть в пределах от 0,5 до 2500 мПа*с.

Определение метода измерения расхода в зависимости от характеристик измеряемой среды

Кориолисовые расходомеры используются для высокоточного измерения расхода (массы) жидкостей, в том числе жидкостей с высокой вязкостью, а также жидкостей с включением твердых компонентов и растворенных газов (до нескольких процентов по объему). Наибольшее применение расходомеры данного типа получили для измерения расхода и дозирования коррозионно-активных веществ, топлива и сжиженных углеводородных газов.

Кориолисовые расходомеры обеспечивают высокоточное измерение массового расхода при изменении температуры и давления измеряемой среды в широких пределах, не чувствительны к турбулентности потока, поэтому не требуют прямолинейных участков до и после расходомера. Рассчитаны на измерение расхода среды с температурой от -50 до +180°С, давлением до 40 МПа и вязкостью от 0 до 100 000 мПа*с.

Для удобства выбора типа расходомера в зависимости от физико-химических свойств среды и измерительной задачи, все данные по четырем рассмотренным выше методам измерения, сведены в таблицы 2 и 3.

Метод измерения Измеряемая среда Диапазон температур Максимальное давление Диапазон вязкости
Электромагнитный Электропроводящие жидкости -30…+180°С 16 МПа 0,1…100000 мПа*с
Вихревой Жидкости, пар, газы -40…+250°С 10 МПа 0…10 мПа*с
Ультразвуковой (врезные датчики) Жидкости, газы -200…+200°С 4 МПа 0…300 мПа*с
Ультразвуковой (накладные датчики) Жидкости, газы -40…+120°С Нет ограничений
по давлению
0,5…2500 мПа*с
Кориолисовый Жидкости, газы -50…+180°С 40 МПа 0…100000 мПа*с
Метод измерения Электромагнитный Вихревой Ультразвуковой Кориолисовый
Возможность применения в системах коммерческого учета + + + +
Возможность применения в системах дозирования + +
Измерение массового расхода + + +
Измерение реверсивных потоков + + +

Необходимо помнить, что приведенных выше данных еще недостаточно для того, чтобы сделать однозначный обоснованный выбор в пользу того или иного метода измерений и уж тем более выбрать конкретный тип и модификацию расходомера. Данная информация позволяет лишь сразу отбросить те методы измерений, которые однозначно нельзя использовать для решения конкретной измерительной задачи. Чтобы снизить вероятность ошибки, в процессе выбора рекомендуется активно взаимодействовать с нашими специалистами.

Необходимо помнить, что приведенных выше данных еще недостаточно для того, чтобы сделать однозначный обоснованный выбор в пользу того или иного метода измерений и уж тем более выбрать конкретный тип и модификацию расходомера. Данная информация позволяет лишь сразу отбросить те методы измерений, которые однозначно нельзя использовать для решения конкретной измерительной задачи. Чтобы снизить вероятность ошибки, в процессе выбора рекомендуется активно взаимодействовать с нашими специалистами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *