Электрический регулятор мощности scr 4000 как подключить
Перейти к содержимому

Электрический регулятор мощности scr 4000 как подключить

  • автор:

Мощный симисторный регулятор мощности

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Мощный симисторный регулятор мощности на BTA41-600

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

Собираем диммер

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

BTA41-600

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

4000Вт регулятор

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Обратная сторона печатной платы покупного диммера

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Лужение силовых дорожек

Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Диммер

Диммер BTA41-600

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.

Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.

Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.

Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Предохранитель в регуляторе мощности

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

Автоматический выключатель на 16 Ампер

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .

Тумблер на 25А

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

Регулятор мощности на 40А

Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Дополнительный резистор

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

Выводы симистора, при его монтаже, рекомендуется делать как можно короче.

Вывод.

Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…

Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Схема простого регулятора мощности на симисторе с питанием от 220 В

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 – 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 – 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 – 22 мкФ х 50 В; С2 – 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 – 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В – При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Особенности регуляторов мощности SCR

Сегодня, более чем когда-либо, инженеры проектируют системы электрического технологического нагрева с использованием регуляторов мощности SCR. Использование регулятора мощности SCR имеет множество преимуществ: более точное управление процессом нагрева, увеличенный срок службы нагревателя, улучшенное качество продукции при более высоких скоростях производства и снижение затрат на обслуживание.

Регулятор мощности SCR — это устройство, являющееся примером правильно спроектированного управления мощностью, имеет в конструкции радиатор охлаждения, защиту от скачков напряжения варистора и предохранитель.

Если вы принимаете решения в своей компании, вы должны выбирать из множества типов компонентов, используемых во всем технологическом процессе. Возьмем, к примеру, контроль мощности. Вы можете спросить: «Зачем использовать кремниевый выпрямитель (SCR), регулирующий мощность?» Давайте ответим на данный вопрос.

В отличие от механического реле или контактора, регулятор мощности SCR не имеет механических частей, которые могут изнашиваться. Регулятор мощности SCR не будет подвергаться дуге или загрязнению контактов. А механическое реле необходимо будет заменить через определенное количество циклов. Из-за медленного (минимум 30 секунд) времени цикла, присущего механическим реле, управление напряжением с их помощью будет некачественным, в сравнении с SCR.

Регулятор мощности SCR

Ртутные реле смещения могут работать быстрее, чем механические реле. Однако при перегреве из-за слишком быстрой смены циклов или перегрузки ртутное реле взорвется. Это приводит к проблеме с опасными материалами. Из-за более строгих правительственных нормативов транспортировка и утилизация ртутных реле также становятся все труднее.

Твердотельные реле — популярная альтернатива механическому управлению мощностью. Общие для всех твердотельных устройств твердотельные реле рассеивают тепло, которое необходимо отвести, и они способны рассеивать больше тепла, чем тиристоры. Но твердотельные реле обычно не поставляются с наконечниками, которые обеспечивают надежное электрическое соединение для более высоких уровней мощности. Кроме того, они не всегда продаются с радиаторами, защитой по напряжению или предохранителями, необходимыми для защиты и безопасной работы реле.

Дальнейшие проблемы могут возникнуть из-за характеристик твердотельного реле. Почти все твердотельные реле рассчитаны на максимальную мощность при 25 о С. В реальных условиях эксплуатации, где внутренние температуры электротехнических шкафов достигают более чем 40 ò С, твердотельное реле может потерпеть неудачу , если используется на полную мощность. У большинства производителей есть таблица снижения номинальных характеристик своей продукции, чтобы компенсировать это несоответствие. К сожалению, при выборе твердотельного реле многие пользователи полагаются только на максимальный рейтинг. Обязательно ознакомьтесь с данными производителя, прежде чем выбирать, какое твердотельное реле лучше всего подойдет для вашего процесса.

Минимальное номинальное напряжение SCR

Таблица 1: Минимальное номинальное напряжение SCR. Минимальное номинальное напряжение для SCR определяется уровнем напряжения питания, на котором он будет использоваться.

Продление срока службы вашего регулятора мощности

Три вещи разрушат все твердотельные регуляторы мощности:

  • Перегрев.
  • Короткие замыкания.
  • Скачки напряжения.

Вот как уберечь их от выхода из строя на вашей производственной линии.

Перегрев

Почти все полупроводники будут разрушены при температуре внутреннего перехода 125 o C. Все твердотельные силовые устройства, такие как тиристоры, симисторы и твердотельные реле, рассеивают тепло. Падение напряжения на силовом устройстве приводит к выделению тепла. Это падение может составлять от 1 до 2 В в зависимости от устройства. Чем больше ток (в амперах) проходит через устройство, тем большую мощность устройство будет рассеивать в виде тепла. Это тепло необходимо убрать, иначе устройство выйдет из строя.

Самый простой и распространенный способ отвода тепла — использование радиатора. Если используется радиатор подходящего размера, SCR может работать на полную мощность при температуре окружающей среды 50 o C. Чем выше выходная сила тока, тем больше тепла рассеивается. Многие производители используют вентиляторы для отвода избыточного тепла от высокопроизводительных регуляторов мощности SCR. В некоторых регуляторах мощности SCR со сверхвысокой выходной мощностью (более 1000 А) используются радиаторы с водяным охлаждением.

Вентилятор для шкафа автоматики

Одна из проблем с некоторыми SCR или твердотельными реле — это упаковка. Чтобы уменьшить размер радиатора, производители делают его с площадью ребер недостаточной для отвода избыточного тепла. Радиаторы, устанавливаемые на DIN-рейку, позволяют сэкономить место на панели и время установки. Однако, когда многие элементы управления установлены рядом друг с другом на DIN-рейке, удельная мощность внутри корпуса увеличивается. В то же время поток воздуха к радиаторам уменьшается или полностью блокируется. Если вы используете такое расположение, убедитесь, что производитель не потребовал, чтобы радиатор на DIN-рейке охлаждался вентилятором или устанавливался с ребрами радиатора снаружи шкафа. Кроме того, проверьте кривую снижения характеристик устройства на том уровне мощности, который он будет использовать.

Даже при низкой мощности, такой как 25 А, каждая управляемая ножка твердотельного реле будет рассеивать около 50 Вт рассеиваемого тепла. Если у вас есть 20 регуляторов мощности твердотельных реле на DIN-рейке в небольшом корпусе, вам придется избавиться от 1000 Вт тепла! При установке элементов управления питанием следует использовать в два раза большую площадь, занимаемую устройством. Например, если регулятор мощности SCR имеет площадь основания 12 x 12 дюймов, используйте для установки область 24 x 24 дюйма.

Чтобы определить тепло, выделяемое контроллером SCR, используйте следующую формулу: для каждой контролируемой ветви (C) умножьте силу тока нагрузки (I) на 1,5.

C x I x 1,5 = рассеиваемая мощность (Вт)

Пластиковые корпуса действуют как теплоизоляторы. Скорее всего, вы повредите регулятор мощности SCR, если установите его внутри пластикового корпуса. Установка радиатора в сквозное отверстие с ребрами радиатора на внешней стороне корпуса — единственный надежный способ использования пластикового корпуса.

Для создания безопасного расположения элементов, позволяющего поддерживать работу регуляторов мощности SCR в течение многих лет, нужно придерживаться следующих рекомендаций. Все тиристоры должны иметь предохранители и металлооксидную варисторную защиту по напряжению. Радиаторы должны быть расположены на безопасном расстоянии друг от друга для эффективного охлаждения. На дверце шкафа автоматики должен быть установлен вентилятор и вентиляционные отверстия в верхней части корпуса для обеспечения достаточного охлаждения для всех компонентов.

Защита от короткого замыкания и предохранители

Все полупроводники могут быть повреждены коротким замыканием. Один из простейших способов защитить регулятор мощности SCR — это предохранитель. SCR — это прочные и надежные устройства. Однако для обеспечения максимальной производительности и срока службы необходимо использовать полупроводниковые, субцикловые и токоограничивающие предохранители. Почти все производители регуляторов мощности SCR имеют эти предохранители на своих регуляторах. Токоограничивающие предохранители надежны и легко заменяются. Предохранитель этого типа сработает в течение 2 мс. Эти предохранители также ограничивают ток при отключении.

В случае короткого замыкания нагревателя проще всего заменить предохранитель. Перед установкой нового предохранителя обязательно удалите закороченный нагреватель или проводку. Не использовать полупроводниковый предохранитель — это глупо и безответственно. Без защиты плавким предохранителем SCR может быть поврежден, когда в этом нет необходимости.

Регуляторы напряжения, представленные в нашем интернет-магазине, имеют встроенные предохранители, которые позволят безопасно использовать их в нагревательных системах. Только будьте внимательны при выборе требуемой мощности, а лучше обратитесь к специалистам Элемаг за консультацией.

Регулятор мощности SCR

Помните, что 99,9% отказов предохранителей происходят из-за короткого замыкания нагревателей, слабых соединений, неправильного (слишком большого) согласования нагрузки или неправильного подключения регулятора мощности SCR. При высоких скачках нагрузки (вольфрамовые лампы, коротковолновые галогенные нагреватели) использование чего-либо, кроме плавного пуска, управления тиристором по углу сдвига по фазе, приведет к перегоранию предохранителей. Никогда не включайте холодный пусковой блок нагревателя после того, как был активирован плавный пуск.

Убедитесь, что размер регулятора мощности SCR соответствует нагрузке вашего нагревателя. Помните, что у нагревателей и линий электропередач есть допуски. В целях безопасности используйте регулятор мощности SCR с номиналом от 1 до 10 процентов от максимального потенциала нагрузки нагревателя.

Скачки напряжения

Скачки перенапряжения затронут почти все электронные устройства. Переходные скачки напряжения могут привести к пропуску зажигания в SCR или даже к необратимому повреждению SCR.

Самым простым в использовании защитным устройством является металлооксидный варистор (MOV). Варистор подключен к тиристору. При использовании варистора с номинальным напряжением выше, чем линейное напряжение, но ниже, чем пиковое напряжение SCR, металлооксидный варистор становится эффективной защитой от скачков напряжения. Если скачок переходного напряжения превышает номинальное напряжение варистора, варистор блокирует этот скачок. Если импульс достаточно мощный, металлооксидный варистор взорвется, защищая тиристор.

Использование платы подавления DV / DT — это следующий шаг в защите от шума линии электропередач и скачков напряжения. Благодаря сети силовых резисторов, высоковольтных конденсаторов и металлооксидных варисторов, SCR имеет лучшую защиту от линейных помех и скачков напряжения. Эта сеть помогает устранить повреждение SCR, а также пропуски зажигания SCR.

Постоянное перенапряжение разрушит SCR. Убедитесь, что тиристоры, используемые в регуляторе мощности, рассчитаны на достаточно высокое напряжение, чтобы выдерживать пики промышленного напряжения. Чем выше пиковое напряжение SCR, тем безопаснее он.

Выбор SCR

Фазо-угловые регуляторы пропорционально включают процентную долю каждого полупериода линии электропередачи. Это обеспечивает плавное, бесступенчатое приложение мощности к нагревателям. Самый точный метод управления, фазовый обжиг, также может увеличить срок службы нагревателя до семи раз, в зависимости от типа нагревателя. Кроме того, поджиг по фазе позволяет использовать такие опции, как плавный пуск, ограничение напряжения и тока. Эти параметры недоступны с другими средствами управления.

Элементы управления переключением при нулевом напряжении пропорционально включают и выключают каждый полный цикл линии питания. Изменяя количество циклов линии питания переменного тока, SCR обеспечивает питание нагревателей. Благодаря переменной временной развертке достигается оптимальное количество циклов включения и выключения. Этот метод создает меньше линейных шумов радиочастотных помех (RFI), чем тиристоры с фазо-угловым возбуждением.

Регуляторы включения / выключения работают так же, как механические или ртутные реле, но с тем преимуществом, что они намного сокращают время цикла.

Выполнив несколько простых шагов, регулятор мощности SCR может обеспечить превосходную производительность при минимальных затратах на обслуживание в течение многих лет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *