Как высчитывается объем
Перейти к содержимому

Как высчитывается объем

  • автор:

Объем фигур

Многие сложные детали (конструкции) можно представить совокупностью различных элементов, объем которых можно вычислить, воспользовавшись набором online-калькуляторов с данной страницы.

Представлены программы для расчета объемов фигур, базисом которых является квадрат или прямоугольник, а также имеющих в основании окружность: цилиндра, конуса и шаровых элементов.

В конструкторской работе при различных расчетах возникает потребность использования значений объема элементарных фигур: параллелепипеда, куба, призмы и пр. В частности это может иметь место при расчете заполнения вагонов и платформ упакованной в транспортную тару готовой продукцией. Такой расчет требует учета многих факторов, в том числе боковой ветровой нагрузки, смещения центра тяжести и пр.

Если неправильно рассчитать объем тары подлежащего отгрузке упакованного товара, можно не вместить в вагон заявленное количество изделий. В результате предприятие потерпит убытки. Онлайн калькуляторы нашего сайта позволят избежать проблемных ситуаций. Расчеты объемов различных фигур выполняются с большой точностью.

Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Параллелепипед.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Параллелепипед, формула объема

Цилиндр.

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

формула объема цилиндра

Пирамида.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

объем пирамиды, общая формула

Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

формула объем правильной пирамиды

объем правильной пирамиды

Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

объем правильной треугольной пирамиды

Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида, объем

Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.

объем тетраэдра

Усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

объем усеченной пирамиды

Куб.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

объем куба

Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

объем конуса

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2 )

объем усеченного конуса

Шар.

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

объем шара

Призма.

Объем призмы равен произведению площади основания призмы, на высоту.

объем призмы

Сектор шара.

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

объем шарового сектора

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.

объем шарового слоя

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Формулы объема геометрических фигур

Куб

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

параллелепипед

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

прямоугольный параллелепипед

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

пирамида

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

V = 1 So · h
3

Объем правильного тетраэдра

правильный тетраэдр

Формула объема правильного тетраэдра:

V = a 3 √ 2
12

Объем цилиндра

цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

Объем конуса

конус

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

V = 1 π R 2 h
3
V = 1 So h
3

Объем шара

шар

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

V = 4 π R 3
3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *