Что такое рабочий цикл двигателя автомобиля
Существует несколько различных типов двигателей, при этом на колесном, гусеничном, водном и даже иногда воздушном транспорте (грузовые и легковые авто, спецтехника, моторные лодки, самолеты и т.п.), нередко можно встретить двигатель внутреннего сгорания (ДВС).
Так или иначе, широкое распространение силовой агрегат данного типа получил благодаря своей автономности, универсальности, а также целому ряду других преимуществ. При этом агрегаты имеют много различных параметров и характеристик, среди которых стоит отдельно выделить рабочий цикл. Далее мы поговорим о том, что означает рабочий цикл автомобильного двигателя внутреннего сгорания.
Рабочий цикл ДВС: что нужно знать
Если рассматривать принцип работы двигателя внутреннего сгорания, топливо в таких агрегатах сгорает в закрытой камере (камера сгорания), куда подается готовая топливно-воздушная смесь или воздух и топливо по отдельности (дизельные агрегаты и моторы с прямым впрыском).
Работа такого мотора основана на том, что во время сгорания топлива происходит расширение газов. Указанные газы становятся причиной роста давления в цилиндре, благодаря чему поршень получает «толчок». Затем энергия, переданная на поршень, преобразуется в механическую работу. Давайте рассмотрим принцип работы двигателя, а также рабочие циклы более подробно.
Двигатели, которые устанавливаются на автомобили, обычно работают по четырехтактному циклу (четырехтактный двигатель). Это значит, рабочий цикл совершается за два оборота коленвала и четыре хода поршня. Работу такого ДВС можно разделить на такты: такт впуска, такт сжатия, такт рабочего хода, такт выпуска.
Как работает четырехтактный бензиновый двигатель
Чтобы было понятнее, начнем с того, что когда поршень в цилиндре во время работы ДВС начинает занимать крайние положения (максимально приближен или удален по отношению к оси коленчатого вала), эти положения принято называть ВМТ и НМТ. ВМТ означает верхняя мертвая точка, тогда как НМТ значит нижняя мертвая точка. Теперь вернемся к тактам.
- На такте впуска коленчатый вал двигателя делает первую половину оборота, при этом поршень из ВМТ движется в НМТ. В этот момент открыт впускной клапан, а выпускной клапан закрыт. При движении поршня вниз в цилиндре образуется разрежение, в результате чего в цилиндр «засасывается» топливно-воздушная смесь через открытый впускной клапан. Рабочая смесь состоит из воздуха и распыленного топлива (в некоторых двигателях на такте впуска поступает только воздух).
- Следующим тактом является сжатие. После того, как произойдет наполнение цилиндра топливно-воздушной смесью, коленвал начинает совершать вторую половину оборота. В этот момент поршень начинает подниматься из НМТ в ВМТ. При этом впускной клапан уже закрыт. Далее поршень сжимает смесь в герметично закрытом цилиндре. Чем больше уменьшается объем цилиндра, тем сильнее сжимается смесь. Результатом такого сжатия является повышение температуры смеси.
- К тому времени, когда поршень подойдет к концу такта сжатия (практически дойдет до ВМТ), смесь в бензиновых двигателях воспламеняется от внешнего источника (электрическая искра на свече зажигания). Затем топливный заряд сгорает, в результате в цилиндре резко повышается температура и давление. В этот момент поршень уже перемещается обратно из ВМТ в нижнюю мертвую точку, принимая на себя энергию расширяющихся газов.
- После того, как поршень почти дойдет до НМТ в конце рабочего хода, происходит открытие выпускного клапана. После этого давление в цилиндре снижается, несколько падает и температура. Затем начинается такт выпуска. В это время коленчатый вал совершает последний полуоборот, при этом поршень снова поднимается из НМТ в ВМТ, буквально «выталкивая» отработавшие газы из цилиндра через открытый выпускной клапан в выпускной коллектор.
Работа четырехтактного дизельного ДВС
Хотя дизель конструктивно похож на бензиновый мотор, в дизельных двигателях изначально сжимается только воздух, после чего прямо в камеру сгорания впрыскивается дизтопливо. При этом воспламенение такой смеси происходит самостоятельно (под большим давлением, а также в результате контакта с нагретым от сильного сжатия воздухом).
Простыми словами, воздух сначала сжимается и нагревается, в среднем, до 650 градусов по Цельсию. В самом конце такта сжатия в камеру сгорания топливная форсунка впрыскивает солярку, затем смесь дизтоплива и воздуха самовоспламеняется.
С учетом данной особенности на такте впуска (поршень движется из ВМТ в НМТ), за счет разряжения в цилиндр подается воздух через открытый впускной клапан. Давление и температура воздуха в этот момент имеют низкие показатели.
Затем начинается сжатие, поршень поднимается из НМТ в верхнюю мертвую точку. Как и в случае с бензиновым мотором, впускной и выпускной клапаны полностью закрыты, что позволяет поршню сильно сжать воздух.
Если учесть, что давление воздуха в цилиндре высокое (необходимо для его нагрева), дизельное топливо в момент впрыска должно также подаваться под очень высоким давлением. Фактически, форсунке нужно «продавить» солярку в камеру сгорания, в которой уже находится сильно сжатый поршнем и горячий воздух.
Для решения этой задачи многие системы питания дизельного двигателя имеют ТНВД (топливный насос высокого давления). Также в схеме могут быть использованы насос-форсунки (форсунка и насос объединены в одно устройство). Еще существуют варианты, когда питание двигателя реализовано при помощи так называемого «аккумулятора» высокого давления. Речь идет о системах Common Rail.
Рекомендуем также прочитать статью о том, что такое крутящий момент и мощность двигателя. Из этой статьи вы подробно узнаете о данных характеристиках, в чем измеряется мощность и момент двигателя, как эти показатели зависят друг от друга и т.д.
После воспламенения заряда происходит расширение газов и начинается рабочий ход поршня. Температура в результате горения смеси повышается, происходит увеличение давления. Указанное давление газов «толкает» поршень, происходит рабочий ход. Завершающим этапом становится выпуск, когда поршень после совершения рабочего хода снова поднимается из НМТ в ВМТ. Затем весь описанный выше процесс (рабочий цикл двигателя) повторяется.
Синхронная работа нескольких цилиндров
Выше были описан принцип работы ДВС, при этом рассматривались процессы в одном цилиндре. Однако, как известно, большинство двигателей являются многоцилиндровыми. Для того чтобы добиться ровной и синхронной работы всех цилиндров, рабочий ход поршня в каждом отдельном цилиндре должен происходить через равный промежуток времени (одинаковые углы поворота коленвала).
В зависимости от компоновки двигателя и его конструктивных особенностей последовательность (порядок работы) может быть разной. Дело в том, что двигатели бывают не только рядными, но и V-образными.
Рекомендуем также прочитать статью о КПД дизельного двигателя. Из этой статьи вы узнаете о данном параметре и от чего зависит КПД, а также почему дизельные моторы имеют КПД выше по сравнению с бензиновыми ДВС.
Во втором случае такая компоновка позволяет разместить цилиндры под углом, при этом становится возможным увеличить общее количество цилиндров без увеличения самой длины блока цилиндра двигателя. Такое решение позволяет разместить мощный многоцилиндровый ДВС под капотом не только большого внедорожника или грузовика, но и легкового авто.
Зависимость мощности и крутящего момента двигателя от числа оборотов коленвала. Крутящий момент бензинового и дизельного ДВС, полка момента, эластичность.
Обороты и мотресурс двигателя. Недостатки езды на низких и высоких оборотах. На каком количестве оборотов мотора ездить лучше всего. Советы и рекомендации.
Что означает понятие объем двигателя. Определение рабочего объема мотора. Классы авто в зависимости от объема ДВС, плюсы и минусы большого объема двигателя.
Почему дизельный мотор имеет больший коэффициент полезного действия по сравнению с двигателями на бензине. Крутящий момент и обороты, энергия дизтоплива.
Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.
Что нужно знать об электромобилях. Устройство машин с электродвигателем, основные характеристики. Эксплуатация и обслуживание в теории и на практике.
Принцип действия дизельных двигателей. Индикаторные и круговые диаграммы
Рабочим циклом называется совокупность периодически повторяющихся в определенной последовательности процессов, протекающих в каждом цилиндре двигателя, в результате которых тепловая энергия переходит в работу.
Тактом называется процесс, происходящий в цилиндре при перемещении поршня от одной мертвой точки к другой.
Если рабочий цикл совершается за четыре хода поршня, чему соответствует два оборота коленчатого вала, то двигатель с таким циклом называется четырехтактным. Каждый такт такого двигателя имеет свое наименование и свои особенности.
Рис.2. Рабочий цикл четырёхтактного дизеля: 1-топливный насос; 2-поршень; 3-форсунка; 4-воздухоочиститсль; 5-впускной клапан; 6-выпускной клапан; 7-цилиндр
Такт впуска. При перемещении поршня от ВМТ до НМТ над ним освобождается пространство, куда через открывающийся впускной клапан 5 (рис.2) поступает чистый воздух у дизеля или смесь воздуха с мелко распыленным бензином (горючая смесь). Поступивший свежий заряд смешивается с остатками отработавших газов от предыдущего такта (такая смесь называется рабочей). При подходе к НМТ давление в цилиндре вследствие сопротивления во впускном трубопроводе, ниже атмосферного и составляет 0,07. 0,09. Температура газов в конце этого такта достигается 40. 70°С у дизеля и 70. 13О°С у карбюраторного двигателя.
Такт сжатия. При перемещении поршня от НМТ к ВМТ впускной клапан закрывается и поступивший в цилиндр воздух или рабочая смесь сжимается, вследствие чего их температура и давление повышаются. Величина повышения давления и температуры определяется степенью сжатия двигателя. У дизеля температура в конце такта сжатия достигает 550. 750°С, а давление 4. 5МПа; у карбюраторного двигателя рабочая смесь нагревается до 300. 430°, а давление составляет 0,8. 1.5МПа.
Такт расширения. При подходе поршня к ВМТ в цилиндр дизеля через форсунку впрыскивается топливо, которое, перемещаясь с нагретым и сжатым воздухом, сгорает; при этом давление газов в цилиндре возрастает до 6. 9 МПа, а их температура поднимается до 1800. 2000° С. Под действием давления расширяющихся газов поршень перемещается от ВМТ к НМТ. В конце этого такта температура газов понижается до 700. 900° С, а давление до 0,3. 0,5МПа.
В карбюраторном двигателе при подходе поршня к ВМТ сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, ввернутой в цилиндра. От сгорания смеси давление газов возрастает до 3,5. 5 МПа, а температура до 2100. 2400°. К концу такта расширения у карбюраторного двигателя температура газов снижается до 900. 1200°, а давление до 0,3. 0,35 МПа.
Такт выпуска. При перемещении поршня от НМТ к ВМТ открывается выпускной клапан, и отработавшие газы выталкиваются из цилиндра в атмосферу. При этом давление газов к концу такта снижается до 0,11. 0,12 МПа, а температура до 500. 700°С у дизеля и 300. 400° у карбюраторного двигателя.
Таким образом, в четырехтактном двигателе только один такт расширения — ход поршня под действием давления газов поворачивает коленчатый вал и совершает полезную работу; этот ход называется рабочим. Остальные такты — впуска, сжатия и выпуска — называются вспомогательными. После такта выпуска рабочий цикл двигателя повторяется.
Принцип работы двигателя Дизеля
Принцип действия мотора дизельного типа отличается от бензиновых моторов. Здесь отсутствуют свечи зажигания, а топливо подается в цилиндры отдельно от воздуха.
Цикл работы такого силового агрегата можно представить в следующем виде:
- в камеру сгорания дизеля подается порция воздуха;
- поршень поднимается, сжимая воздух;
- от сжатия воздух нагревается до температуры около 800˚C;
- в цилиндр впрыскивается топливо;
- ДТ воспламеняется, что приводит к опусканию поршня и выполнению рабочего хода;
- продукты горения удаляются с помощью продувки через выпускные окна.
От того, как работает дизельный двигатель, зависит его экономичность. В исправном агрегате используется бедная смесь, что позволяет сэкономить количество топлива в баке.
Рабочие циклы двигателей
Рабочий цикл четырехтактного карбюраторного двигателя
Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.
Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными. В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.
Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.
Такт впуска
В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт. Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение. Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.
Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.
Такт сжатия
При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака). В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С. В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает. В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.
Такт расширения (рабочий ход)
Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом. При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.
Такт выпуска
При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра. При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.
При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.
Дизельный двигатель: устройство и схема работы
Дизельный двигатель – двигатель внутреннего сгорания, изобретенный Рудольфом Дизелем в 1897 году. Устройство дизельного двигателя тех лет позволяло использовать в качестве топлива нефть, рапсовое масло, и твердые виды горючих веществ. Например, каменноугольную пыль.
Принцип работы дизельного двигателя современности не изменился. Однако моторы стали более технологичными и требовательными к качеству топлива. Сегодня в дизелях используется только высококачественное ДТ.
Моторы дизельного типа отличаются топливной экономичностью и хорошей тягой при низких оборотах коленвала, поэтому получили широкое распространение на грузовых автомобилях, кораблях и поездах.
С момента решения проблемы высоких скоростей (старые дизели при частом использовании на высоких скоростях быстро выходили из строя) рассматриваемые моторы стали часто устанавливаться на легковые авто. Дизели, предназначенные для скоростной езды, получили систему турбонаддува.
Второй такт — сжатие.
Как устроен простейший двигатель?
Устройство двигателя для детей
Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.
Судовые двигатели внутреннего сгорания (СДВС)
Дизельный двигатель — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива
ИА Neftegaz.RU.
Первые судовые двигатели внутреннего сгорания (ДВС) появились в начале 20-го века. Датское судно Зеландия, построенное в 1912 г, имело дизельную установку с 2-мя дизелями мощностью по 147,2 кВт.
В настоящее время основную часть устанавливаемых на судах главных энергетических установок составляют ДВС.
Паротурбинные установки имеют только суда с мощностью двигателей от 14700 до 22 100 кВт.
Дизельная энергетическая установка состоит из 1-го или нескольких основных двигателей, а также из обслуживающих их механизмов.
В зависимости от способа осуществления рабочего цикла ДВС разделяют на 4-тактные и 2-тактные.
Дополнительное увеличение мощности достигается с помощью наддува.
По частоте вращения ДВС разделяются на: малооборотные дизели с частотой вращения 100-150 об/мин, которые непосредственно приводят в движение судовой движитель; среднеоборотные — 300-600 об/мин, которые приводят в движение судовой движитель через редуктор.
До конца 60-х гг на судах устанавливали реверсивные главные двигатели, позволяющие судну осуществлять задний ход. Только при малых мощностях для реверса ДВС использовали специальные устройства (реверсредукторы), дающие возможность маневрирования.
В 60-х гг одновременно с появлением винтов регулируемого шага начали в качестве главного двигателя применять нереверсивные ДВС вначале на малых судах, траулерах и буксирах, а затем и на больших торговых судах. За счет этого конструкция двигателей упростилась.
Первый такт — впуск.
Устройство двигателя современного
автомобиля, устройство систем и механизмов
Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление 0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.
Как устроен дизельный двигатель
Основным отличием конструкции дизеля от бензиновых моторов является наличие топливного насоса высокого давления, дизельных форсунок и отсутствие свечей зажигания.
Общее устройство этих двух разновидностей силового агрегата не различается. И в том, и в другом имеются коленчатый вал, шатуны, поршни. При этом у дизельного мотора все элементы усилены, так как нагрузки на них более высокие.
На заметку: некоторые движки дизельного типа имеют свечи накаливания, которые ошибочно принимаются автолюбителями за аналог свечей зажигания. На самом деле, это не так. Свечи накаливания используются для нагрева воздуха в цилиндрах в мороз.
При этом дизель легче заводится. Свечи зажигания в бензиновых моторах применяются для воспламенения топливовоздушной смеси в процессе работы двигателя.
Систему впрыска на дизелях делают прямой, когда топливо поступает непосредственно в камеру, или непрямой, когда воспламенение происходит в предкамере (вихревая камера, фор-камера). Это небольшая полость над камерой сгорания, с одним или несколькими отверстиями, через которые туда поступает воздух.
Плюсы и минусы дизельного мотора
Как и любой другой тип силового агрегата, дизельный мотор имеет положительные и отрицательные черты. К «плюсам» современного дизеля относят:
- экономичность;
- хорошую тягу в широком диапазоне оборотов;
- больший, чем у бензинового аналога, ресурс;
- меньшее количество вредных выбросов.
Дизель не лишен и недостатков:
- моторы, не оснащенные свечами накаливания, плохо заводятся в мороз;
- дизель дороже и сложнее в обслуживании;
- высокие требования к качеству и своевременности обслуживания;
- высокие требования к качеству расходных материалов;
- большая, чем у бензиновых движков, шумность работы.
Дизельный двигатель с турбонаддувом
Принцип работы турбины на дизельном двигателе практически не отличается от такового на бензиновых моторах. Суть заключается в нагнетании в цилиндры дополнительного воздуха, что закономерно увеличивает количество поступающего топлива. За счет этого отмечается серьезный прирост мощности мотора.
Устройство турбины дизельного двигателя также не имеет существенных отличий от бензинового аналога. Устройство состоит из двух крыльчаток, жестко связанных между собой, и корпуса, внешне напоминающего улитку. На корпусе турбокомпрессоров имеется 2 входных и 2 выходных отверстия. Одна часть механизма встраивается в выпускной коллектор, вторая во впускной.
Схема работы проста: газы, выходящие из работающего мотора, раскручивают первую крыльчатку, которая вращает вторую. Вторая крыльчатка, вмонтированная во впускной коллектор, нагнетает атмосферный воздух в цилиндры. Увеличение подачи воздуха приводит к увеличению подачи топлива и росту мощности. Это позволяет мотору быстрее набирать скорость даже на низких оборотах.
Принцип действия дизельных двигателей. Индикаторные и круговые диаграммы
Рабочий цикл — это строгая последовательность рабочих процессов (тактов), периодически повторяющихся в каждом цилиндре. Каждый такт соответствует одно проходу поршня.
Рабочий цикл дизеля может совершаться как за четыре такта (за два оборота коленчатого вала), так и за два такта (за один оборот коленчатого вала). В первом случае дизель называется четырехтактным, во втором — двухтактным.
Рабочий цикл четырехтактного дизеля состоит из тех же тактов, что и рабочий цикл карбюраторного двигателя. Однако происходящие во время этих тактов процессы внутри цилиндров у карбюраторного двигателя и дизеля не одинаковы.
Во время такта впуска в цилиндр дизеля всасывается не горючая смесь, а воздух. Во время такта сжатия поступивший в цилиндр воздух сильно сжимается и вследствие этого нагревается до 500—700° С. В конце этого такта в цилиндр впрыскивается под большим давлением в мелкораспыленном состоянии топливо, которое, соприкасаясь с раскаленным воздухом, воспламеняется и быстро сгорает, образуя большое количество газов и выделяя тепло.
Во время такта расширения под давлением газов поршень перемещается. Процессы при этом такте, а также при такте выпуска аналогичны процессам, происходящим в четырехтактном карбюраторном двигателе.
Таким образом, в любом четырехтактном двигателе только один такт рабочий, а остальные три — вспомогательные.
Рабочий цикл двухтактного дизеля существенно отличается от рабочего цикла четырехтактного: он совершается не за два, за один оборот коленчатого вала и состоит только из двух тактов.
Рис. Основные процессы, происходящие в цилиндрах двухтактного дизеля: а — продувка; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1 — поршень; 2 — нагнетатель; 3 — выпускной клапан; 4 — продувочные окна; 5 — ресивер блока; 6 — коленчатый вал; 7 — насос-форсунка
Первый такт (рис. а и б) происходит при перемещении поршня от нижней мертвой точки к верхней. Когда поршень 1 находится в нижней мертвой точке, свежий воздух под небольшим давлением поступает из нагнетателя 2 через ресивер 5 блока и продувочные окна 4 в цилиндр, вытесняя при этом остатки отработавших газов через открытый выпускной клапан 3. Когда поршень, перемещаясь вверх, перекрывает продувочные окна, а выпускной клапан закрывается, продувка цилиндра заканчивается. При дальнейшем перемещении поршня воздух в цилиндре сильно сжимается и нагревается. Когда поршень приближается к верхней мертвой точке, в цилиндр через насос-форсунку 7 впрыскивается под большим давлением топливо.
Второй такт (рис. в и г). Мелкораспыленное топливо, соприкасаясь с раскаленным воздухом, сгорает; при этом выделяется большое количество тепла, температура и давление газов резко возрастают. Под действием давления газов поршень перемещается от верхней мертвой точки к нижней, вращая коленчатый вал.
Когда поршень приближается к продувочным окнам, открывается выпускной клапан и значительная часть отработавших газов вследствие большого избыточного давления выходит из цилиндра. При дальнейшем движении поршня открываются продувочные окна, в цилиндр начинает поступать из ресивера блока чистый воздух, вытесняя через открытый выпускной клапан остатки отработавших газов.
Рабочий цикл на этом завершается.
Таким образом, в двухтактном двигателе, и это является его особенностью, рабочий ход поршня совершается при. каждом обороте коленчатого вала.
В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.
- Рабочий цикл четырехтактного двигателя
- Двухтактный двигатель – особенности работы
- Рабочий цикл двухтактного двигателя – достоинства и недостатки
Рабочий цикл четырехтактного двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.
Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов.Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.
Такт впуска
Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа
, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр.От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру
75—125 °С.
Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.
Такт сжатия
После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа
, а температура газов
300— 450 °С.
Такт расширения, или рабочий ход
В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа
, а температура газов
2100—2400 °С.
При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа
, а температура — до
900—1200 °С.
Рекомендуем: Как правильно пристегнуть детское кресло в автомобиле: забота о безопасности
Такт выпуска
Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа
, а температура газов в начале такта выпуска составляет
750— 900 °С
, понижаясь к его концу до
500—600 °С.
Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.
Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12.
По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.
Двухтактный двигатель – особенности работы
Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.
Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.
Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.
Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.
Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе.Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.
Рабочий цикл двухтактного двигателя – достоинства и недостатки
Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%!
Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве.Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.
В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
КАК РАБОТАЕТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
В данном разделе рассматривается принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового мотора.
Главная часть двигателя внутреннего сгорания — это цилиндр с внутренней зеркальной поверхностью. Сверху на цилиндре установлена головка, которая является отдельной деталью и при необходимости снимается, например чтобы получить доступ к двигателю для проведения ремонтных работ (рис. 1.2).
Рис. 1.2. Двигатель со снятой головкой блока цилиндров.
Внутри цилиндра находится поршень. Внешне он напоминает обычный стакан, который перевернут вверх дном (именно дно поршня является его рабочей поверхностью). В процессе работы двигателя поршень внутри цилиндра перемещается вертикально вверх- вниз с высокой интенсивностью.
Снаружи по окружности поршня в отдельных канавках расположены поршневые кольца. Поршень прилегает к внутренней поверхности цилиндра неплотно. Поршневые кольца, во-первых, препятствуют попаданию вниз газа, образующегося при работе двигателя, во- вторых, не пропускают моторное масло в камеру сгорания, которая находится над поршнем и расположена над верхней мертвой точкой (о том, что это такое, рассказывается далее).
Поршень закреплен на шатуне с помощью специальной детали, которая называется поршневым пальцем. В свою очередь, шатун закреплен на коленчатом валу двигателя, а точнее — на кривошипе коленчатого вала (рис. 1.3). При сгорании рабочей смеси образующиеся газы оказывают сильное давление на поршень, который начинает двигаться вниз и через шатун передает свою энергию на коленчатый вал, что в результате вынуждает его вращаться.
Рис. 1.3. Поршень с шатуном.
Рекомендуем: Что такое Вебасто: назначение, устройство, принцип работы
На конце коленчатого вала имеется тяжелый металлический диск с зубьями, который называется маховиком. Основная его задача — обеспечить вращение коленчатого вала по инерции, что необходимо для подготовительных тактов рабочего цикла (о том, что такое «такты» и «рабочий цикл», будет рассказано далее).
Горючая смесь поступает в камеру сгорания через впускной клапан, а после сгорания продукты горения, которые представляют собой выхлопные газы, выходят из камеры сгорания через выпускной клапан. Оба клапана открываются в тот момент, когда их толкает соответствующий кулачок распределительного вала. Как только кулачок отходит назад (это происходит очень быстро, так как распределительный вал вращается с высокой скоростью), клапаны вновь плотно закрываются: их возвращают в исходное положение мощные пружины.
Распределительный вал двигателя приводится в действие коленчатым валом.
Свеча вкручивается непосредственно в головку блока цилиндров: для этого специально предназначено отверстие с резьбой. Свеча является источником искры, которая проскакивает между ее электродами, от нее в камере сгорания воспламеняется рабочая смесь. На каждый цилиндр двигателя приходится одна свеча (следовательно, у четырехцилиндрового двигателя имеется четыре свечи, у восьми-цилиндрового — восемь и т. д.).
При движении вверх-вниз поршень поочередно достигает двух крайних положений — верхнего и нижнего: в них он максимально удален от центральной оси коленчатого вала. Верхнее крайнее положение поршня называется верхней мертвой точкой, а нижнее — нижней мертвой точкой (соответственно ВМТ и НМТ). Расстояние между ВМТ и НМТ называется ходом поршня.
Пространство, которое остается над поршнем при его нахождении в ВМТ, называется камерой сгорания. Именно здесь воспламеняется и сгорает рабочая смесь. При этом возникает своеобразный «мини-взрыв», который сопровождается резким и сильным повышением давления, под воздействием которого поршень начинает двигаться вниз. Как раз в этот момент тепловая энергия превращается в механическую. При вертикальном движении вниз поршень через шатун толкает коленчатый вал, заставляя его вращаться. Образовавшийся крутящий момент передается на ведущие колеса автомобиля, которые и приводят машину в движение.
Объем в промежутке между ВМТ и НМТ называется рабочим объемом цилиндра. Если суммировать объем камеры сгорания (как указывалось, так называется пространство над ВМТ) и рабочий объем цилиндра, получится полный объем цилиндра. Сумма полных объемов всех цилиндров называется рабочим объемом двигателя.
По такому принципу работает двигатель внутреннего сгорания современного автомобиля. Далее рассмотрено, что представляет собой рабочий цикл двигателя внутреннего сгорания.
Как работает четырехтактный двигатель
Конструктивно рабочий цикл типового четырехтактного агрегата обеспечивается работой следующих элементов:
- цилиндр;
- поршень — выполняет возвратно-поступательные движения внутри цилиндра;
- клапан впуска — управляет процессом подачи топливовоздушной смеси в камеру сгорания;
- клапан выпуска — управляет процессом выброса отработавших газов из цилиндра;
- свеча зажигания — осуществляет воспламенение образовавшейся топливовоздушной смеси;
- коленчатый вал;
- распределительный вал — управляет открытием и закрытием клапанов;
- ременной или цепной привод;
- кривошипно-шатунный механизм — переводит движение поршня во вращение коленчатого вала.
Рабочий цикл четырехтактного двигателя
Рабочий цикл такого механизма состоит из четырех тактов, в ходе которых реализуются следующие процессы:
- Впуск (нагнетание топлива и воздуха). В начале цикла поршень находится в ВМТ. В момент, когда коленвал начинает вращаться, он воздействует на поршень и переводит его в НМТ. Это приводит к образованию разрежения в камере цилиндра. Распредвал воздействует на клапан впуска, постепенно открывая его. Когда поршень оказывается в крайнем положении клапан полностью открыт, в результате чего происходит интенсивное нагнетание топлива и воздуха в камеру цилиндра.
- Сжатие (увеличение давления горючей смеси). На втором этапе поршень начинает обратное перемещение к верхней мертвой точке такта сжатия. Коленвал совершает еще один поворот, а оба клапана полностью закрыты. Внутреннее давление увеличивается до величины 1,8 МПа и повышается температура горючей смеси до 600 С°.
- Расширение (рабочий ход). При достижении верхней позиции поршнем в камере сгорания устанавливается максимальная компрессия до 5 МПа и срабатывает свеча зажигания. Это приводит к возгоранию смеси и увеличению температуры до 2500 С°. Давление и температура приводят к интенсивному воздействию на поршень, и он начинает вновь перемещаться к НМТ. Коленвал совершает еще поворот, и таким образом, тепловая энергия переходит в полезную работу. Распредвал открывает выпускной клапан, и при достижении поршнем НМТ он полностью раскрыт. В результате отработавшие газы начинают постепенно выходить из камеры, а давление и температура снижаются.
- Выпуск (удаление отработавших газов). Коленвал двигателя поворачивается, и поршень начинает движение в верхнюю точку. Это приводит к выталкиванию отработавших газов и еще большему снижению температуры и уменьшению давления до 0,1 МПа. Далее, начинается новый цикл, в ходе которого указанные процессы вновь повторяются.
В ходе каждого такта коленчатый вал двигателя совершает поворот на 180°. За полный рабочий цикл коленвал поворачивается на 720°.
Четырехтактный двигатель получил широкое распространение. Он может работать как с бензином, так и с дизельным топливом. Отличием рабочего цикла для дизеля является то, что воспламенение топливовоздушной смеси происходит не от искры, а от высокого давления и температуры в конечной точке такта сжатия.
Принцип действия дизельных двигателей. Индикаторные и круговые диаграммы
Дизелем называют ДВС с внутренним смесеобразованием, в котором тяжелое жидкое топливо, вводимое в распыленном состоянии в цилиндр в конце хода сжатия, самостоятельно воспламеняется в горячем сжатом воздухе. Основными понятиями, относящимися ко всем дизельным двигателям, являются (рис. 17):
- верхняя мертвая точка (ВМТ) – положение поршня, при котором он наиболее удален от оси коленчатого вала;
- нижняя мертвая точка (НМТ) – положение поршня наиболее близкое к оси коленчатого вала;
- ход поршня S , [м] – расстояние между ВМТ и НМТ: S = 2R ;
- рабочий объем цилиндра VS , [м3] – объем, описываемый поршнем при движении между ВМТ и НМТ :
- объем камеры сжатия VC , [м3] – объем цилиндра над поршнем при нахождении его в ВМТ;
- полный объем цилиндра VA , [м3] – сумма рабочего объема цилиндра и объема камеры сжатия:
Принцип действия четырехтактного дизеля
Рабочий цикл в цилиндре четырехтактного дизеля осуществляется за два оборота коленчатого вала (4 хода поршня). Цилиндр четырехтактного дизеля закрыт крышкой, в которой располагаются клапаны для впуска свежего заряда воздуха и выпуска продуктов сгорания (рис. 18). Впускные и выпускные клапаны удерживаются в закрытом положении пружинами и давлением, создаваемым в цилиндре в периоды сжатия, сгорания топлива и расширения. Открытие клапанов в необходимые моменты времени осуществляется с помощью газораспределительного механизма.
Рабочий цикл четырехтактного дизеля состоит из следующих процессов (тактов): впуска, сжатия, расширения (рабочего хода) и выпуска, и происходит следующим образом (рис. 18):
Первый такт – впуск. В начальный момент времени давление в цилиндре двигателя несколько выше атмосферного – точка 1 индикаторной диаграммы (рис. 18). Поршень из ВМТ начинает свое движение к НМТ, открывается впускной клапан и поршень всасывает в цилиндр свежий заряд воздуха (процесс 1− 2). При этом давление в цилиндре устанавливается чуть ниже атмосферного (для двигателей без наддува) за счет гидравлического сопротивления впускного клапана. Часто для увеличения массы свежего заряда воздух предварительно сжимают в компрессоре до избыточного давления 0,13 ÷ 0,4 МПа, а затем охлаждают в воздухоохладителе. Такое увеличение массы свежего заряда называется наддувом.
Второй такт – сжатие. Поршень из НМТ начинает движение к ВМТ. Впускной клапан закрывается и происходит сжатие воздуха, поступившего в цилиндр дизеля. При этом уменьшается объем заряда воздуха, повышается его давление (процесс 2 − 3 ) до 3,6 ÷ 4,0 МПа в дизелях без наддува, а при высоком наддуве – до 11,0 МПа, что сопровождается увеличением температуры воздуха до 500 °C и выше. В конце такта, при нахождении поршня вблизи ВМТ, в цилиндр через форсунку начинает поступать мелко распыленное топливо, которое от соприкосновения с горячим воздухом самовоспламеняется и начинает гореть. При сгорании топлива давление в цилиндре повышается до 5,5 ÷ 8,5 МПа в дизелях без наддува, и до 11,0 ÷ 14,5 МПа в дизелях с высокой степенью наддува. Процесс сгорания
40 % топлива в конце такта сжатия близок к изохорному (изображен на индикаторной диаграмме линией 3 − 4 ) и происходит при нахождении поршня вблизи ВМТ.
Третий такт – расширение (рабочий ход). В начале такта расширения топливо продолжает поступать в цилиндр дизельного двигателя, и процесс сгорания
60 % топлива при начале движения поршня от ВМТ к НМТ близок к изобарному (процесс 4 − 5 на диаграмме). По окончании сгорания топлива происходит расширение продуктов сгорания (процесс 5 − 6 на индикаторной диаграмме). Расширяющиеся продукты сгорания воздействуют на поршень, совершая полезную работу. Давление газов в цилиндре двигателя и их температура в ходе процесса расширения понижаются.
Четвертый такт – выпуск. По окончании хода расширения открывается выпускной клапан, и поршень начинает движение от НМТ к ВМТ. При этом происходит выпуск отработавших газов через выпускной клапан (процесс 6 −1 на индикаторной диаграмме). Давление в цилиндре в процессе выпуска газов несколько выше атмосферного за счет гидравлического сопротивления выпускного клапана.
Таким образом в четырехтактном дизельном двигателе полезным является только такт расширения (рабочий ход), остальные три такта осуществляются за счет кинетической энергии вращающегося коленчатого вала с маховиком и работы других цилиндров двигателя.
Процессы газообмена в цилиндре дизельного двигателя (фазы газораспре-деления) могут быть изображены на двух окружностях, обозначающих периоды открытия впускных и выпускных клапанов в функции угла поворота коленчатого вала. Такие диаграммы называются диаграммами газораспределения или круговыми диаграммами.
В 4-хтактных дизелях на газообмен отведено 550 ÷ 570 градусов поворота коленчатого вала (ПКВ). Процесс газообмена в четырехтактных дизелях можно разбить на следующие периоды (рис. 19):
Свободный выпуск – осуществляется за счет разницы атмосферного давления и давления в цилиндре двигателя в момент открытия выпускного клапана (линия О − А диаграммы). При этом газы с большой скоростью устремляются в выпускной патрубок двигателя. Продолжительность периода свободного выпуска примерно соответствует углу предварения открытия выпускного клапана (ϕ1 = 40 ÷ 50° ПКВ). Тепловая и кинетическая энергия выпускных газов, как правило, используется для привода турбокомпрессора или работы утилизационных котлов.
Принудительный выпуск – теоретически начинается в НМТ и заканчивается в ВМТ. Это принудительное выталкивание продуктов сгорания из цилиндра телом поршня.
Продувка – в конце хода выпуска открывается впускной клапан (линия О − С , ϕ 3 = 50 ÷ 60° ПКВ до ВМТ), а выпускной остается открытым. При двух открытых одновременно клапанах происходит продувка камеры сгорания воздухом и удаление оставшихся в цилиндре газов. Кроме того, продувка снижает температуру стенок камеры сгорания, поршня и выпускных клапанов, улучшая условия работы и увеличивая срок их службы. Продолжительность продувки составляет
Наполнение – теоретически начинается в ВМТ, а фактически – с момента закрытия выпускного клапана (линия O − D , ϕ 4 = 50 ÷ 55° ПКВ за ВМТ) и частично протекает одновременно с продувкой. Окончание наполнения совпадает с приходом поршня в НМТ.
Дозарядка – поршень движется вверх по ходу сжатия, а впускной клапан некоторое время остается открытым до момента, соответствующего линии O − B на диаграмме (ϕ 2 = 30 ÷ 40° ПКВ после НМТ). Воздух продолжает поступать в цилиндр по инерции и несколько увеличивает плотность заряда в цилиндре.
Принцип действия двухтактного дизеля
Из рассмотрения индикаторной диаграммы четырехтактного дизельного двигателя видно, что он только половину времени, затраченного на цикл, работает как тепловой двигатель (такты сжатия и расширения). Остальное время (такты впуска и выпуска) двигатель работает как воздушный насос. Более полно время, отводимое на рабочий цикл, используется в двухтактных дизелях, в которых рабочий цикл осуществляется за один оборот коленчатого вала. Необходимая замена отработавших газов свежим воздухом происходит на небольшой части хода поршня в конце такта расширения и в начале такта сжатия, и составляет примерно 140 ÷ 150 ° ПКВ.
В отличие от четырехтактного, в двухтактном дизеле вместо впускных и выпускных клапанов в стенке цилиндра выполнены впускные (продувочные) ПО и выпускные ВО окна (рис. 20). Продувочным насосом ПН воздух нагнетается в воздушный ресивер Р, и через продувочные окна ПО поступает в цилиндр двигателя. Продукты сгорания топлива покидают цилиндр через выпускные окна ВО и выпускной патрубок ВП. Открытие и закрытие продувочных и выпускных окон осуществляется телом поршня при его движении в цилиндре.
Рабочий цикл двухтактного дизеля изображен на рис. 21 и состоит из следующих тактов:
Первый такт – сжатие. Поршень находится в НМТ. Продувочные и выпускные окна полностью открыты. При этом происходит продувка цилиндра, продолжающаяся до тех пор, пока поршень, двигаясь вверх, не перекроет продувочные окна (процесс 7 − 6 на диаграмме). При последующем движении поршень закроет выпускные окна, причем в период, изображенный на диаграмме линией 6 −1, из цилиндра выталкивается часть свежего заряда воздуха. После закрытия поршнем выпускных окон, начинается сжатие воздуха, сопровождающееся повышением давления и температуры (процесс сжатия изображен на диаграмме линией 1− 2 ). При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо, которое воспламеняется от соприкосновения с горячим воздухом. Часть топлива (
40 %) сгорает при постоянном объеме при нахождении поршня вблизи ВМТ (процесс 2 − 3).
Второй такт – рабочий ход (расширение). Поршень начинает движение от ВМТ к НМТ. Оставшаяся часть топлива (
60 %) сгорает при постоянном давлении (процесс 3 − 4 ). После полного сгорания топлива происходит расширение горячих газов (линия 4 − 5 ), которое заканчивается, когда поршень своей кромкой откроет выпускные окна в точке 5. С этого момента начинается свободный выпуск отработавших газов, сопровождающийся резким понижением давления в цилиндре (процесс 5 − 6 ). В точке 6 поршень открывает продувочные окна и начинается продувка цилиндра – принудительное вытеснение из него потоком воздуха отработавших газов и заполнение свежим зарядом воздуха (процессы 6 − 7 и 7 − 6 на диаграмме).
Теоретически при одинаковых размерах цилиндра и равных числах оборотов в минуту двухтактный дизель может развивать мощность в 2 раза большую, чем четырехтактный. В действительности мощность двухтактного дизеля (при прочих равных условиях) больше лишь в 1,7 ÷ 1,8 раза, чем у четырехтактного, так как часть хода поршня затрачивается на процессы выпуска и продувки. Кроме того на привод навешенного на двигатель продувочного насоса затрачивается 6 – 8 % мощности двигателя.
Весь процесс газообмена двухтактного дизеля можно условно разделить на следующие периоды (рис. 22):
Свободный выпуск – начинается с момента открытия поршнем выпускных окон (линия О − b ) и заканчивается в момент открытия поршнем продувочных окон (линия O − d ). В этот период происходит интенсивный выброс отработавших газов в выпускной тракт за счет перепада давлений в цилиндре (
0,45 МПа) и в выхлопном патрубке (
Принудительный выпуск и продувка – начинаются в точке d и заканчиваются в момент закрытия продувочных окон (линия O − d ′ ). При этом происходит принудительное вытеснение отработавших газов продувочным воздухом и одновременное заполнение цилиндра свежим зарядом.
Потеря заряда воздуха – объясняется тем, что верхние кромки выпускных окон расположены выше продувочных. Поршень при движении к ВМТ до момента закрытия выпускных окон (линия O − a ) успевает вытолкнуть через выпускные окна часть поступившего в цилиндр воздуха. Фаза потери заряда воздуха является нежелательной, поэтому существует ряд конструктивных решений для замены ее на фазу дозарядки. Например, вместо щелевой схемы продувки, описанной выше, используют прямоточную клапанно-щелевую схему. В таких конструкциях дизелей выпускные окна отсутствуют, а вместо них в крышке цилиндра устанавливается выпускной клапан, приводимый в действие от механизма газораспределения.
Литература
Судовые энергетические установки. Дизельные и газотурбинные установки. Болдырев О.Н. [2003]
Похожие статьи
- Смазочные масла: физико-химические свойства
- Топливо: элементарный состав топлива
- Понятие о тепловом балансе дизеля: экономическая оценка
- Цикл теплового двигателя: преобразование тепловой энергии
- Работа и мощность двигателей: среднее индикаторное давление
- Системы продувки двухтактных двигателей
- Рабочие циклы двухтактных двигателей
- Рабочие циклы четырёхтактных двигателей
- Основные данные двигателей: рабочий объем цилиндра
- Классификация и маркировка двигателей
5 Rating 5.00 (2 Votes)
РАБОЧИЙ ЦИКЛ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
Рабочий цикл — это строгая последовательность рабочих процессов (тактов), периодически повторяющихся в каждом цилиндре. Каждый такт соответствует одному проходу поршня.
Двигатели внутреннего сгорания бывают четырехтактными и двухтактными. Принципиальная разница между ними заключается в следующем: в четырехтактном двигателе один рабочий цикл происходит за четыре хода поршня, а в двухтактном — за два хода. Двухтактные двигатели используются в основном на мотоциклах, моторных лодках, скутерах и т. п. Поэтому здесь будем вести речь о четырехтактном двигателе внутреннего сгорания — именно такими моторами оснащаются легковые автомобили.
Рабочий цикл четырехтактного двигателя внутреннего сгорания включает в себя следующие такты.
1. Первый такт — впуск горючей смеси в цилиндр двигателя. Нужно сказать, что в цилиндре происходит сгорание топлива не в чистом виде, а смеси его паров с воздухом (горючая смесь). В советских автомобилях за приготовление такой смеси отвечал специальный прибор — карбюратор. Однако в современных автомобилях карбюраторы давно не применяются — данный процесс контролируется электроникой (прибором, который называется инжектор).
Для бензинового двигателя внутреннего сгорания оптимальной является горючая смесь, состоящая из 1 части бензина и 15 частей воздуха (то есть 1:15).
Рекомендуем: Меняем масло в АКПП на Лада Гранта и проверяем уровень масла в автомате
Горючая смесь попадает в цилиндр при открывшемся впускном клапане (напомню, что в нужный момент на него давит кулачок распределительного вала). В момент открытия впускного клапана поршень всегда расположен в ВМТ и начинает перемещаться вниз к НМТ. При этом над поршнем возникает разрежение, под воздействием которого в цилиндр поступает горючая смесь. Иными словами, при движении вниз к НМТ поршень засасывает горючую смесь в цилиндр через открывшийся впускной клапан. Как только поршень достигнет НМТ, клапан под воздействием мощной пружины возвращается на прежнее место и плотно закрывает впускное отверстие.
Когда горючая смесь попадает в цилиндр, она перемешивается с остатками имеющихся в нем выхлопных газов. Такая смесь называется рабочей, и именно она будет сгорать в камере сгорания.
На протяжении первого такта работы мотора кривошип коленчатого вала (рис. 1.4) проворачивается на пол-оборота.
Рис. 1.4. Коленчатый вал двигателя.
2. Исходное положение для начала второго такта таково: поршень находится в НМТ, впускной клапан плотно закрыт, цилиндр заполнен рабочей смесью. Во время второго такта поршень перемещается от НМТ к ВМТ, сжимая в процессе этого находящуюся в цилиндре рабочую смесь.
Опытным водителям хорошо знакомо такое понятие, как степень сжатия. Данный показатель информирует о том, во сколько раз сокращается объем рабочей смеси при достижении поршнем ВМТ. Отмечу, что степень сжатия — одна из наиболее значимых технических характеристик любого автомобиля.
В процессе сжатия рабочей смеси ее температура существенно повышается. При достижении поршнем ВМТ она равняется примерно +300… 400 °С. Что касается давления внутри цилиндра, то оно при этом составляет порядка 9-10 кг/см.
Второй такт заканчивается при достижении поршнем ВМТ. В этот момент рабочая смесь максимально сжата. За второй такт кривошип коленчатого вала проворачивается еще на пол-оборота. Следовательно, за два такта коленчатый вал делает один полный оборот.
3. Как отмечалось ранее, принцип работы двигателя внутреннего сгорания заключается в преобразовании тепловой энергии в механическую. Это происходит на третьем этапе работы двигателя, который называется рабочим ходом. Когда поршень находится в ВМТ, а рабочая смесь максимально сжата, между электродами свечи зажигания возникает электрическая искра, что вызывает воспламенение рабочей смеси (это происходит в камере сгорания). В результате на поршень, находящийся в ВМТ, оказывается мощное давление. Клапаны в этот момент плотно закрыты, продуктам горения деваться некуда, и именно они давят на поршень, который под воздействием этого давления вынужден двигаться вниз к НМТ. При этом он передает энергию своего движения через шатун на кривошип коленчатого вала, тем самым вынуждая его вращаться. Именно это вращение является движущей силой автомобиля.
Давление на поршень во время третьего такта рабочего цикла двигателя достигает 40 кг/см.
Во время третьего такта коленчатый вал двигателя проворачивается еще на пол-оборота.
4. Последний, четвертый такт рабочего цикла — выпуск отработанных газов. Он начинается, когда после третьего такта поршень находится в НМТ и начинает двигаться вверх. В этот момент под воздействием соответствующего кулачка распределительного вала открывается выпускной клапан и движущийся вверх поршень выдавливает выхлопные газы из цилиндра. Сразу после этого клапан плотно закрывает выпускное отверстие. Затем выхлопные газы через глушитель и выхлопную трубу выводятся наружу.
Четвертый такт завершается, когда поршень достиг ВМТ и плотно закрылся выпускной клапан.
В течение четвертого такта коленчатый вал проворачивается еще на пол-оборота. Следовательно, за четыре такта работы (на протяжении одного рабочего цикла) коленчатый вал делает два полных оборота.
После четвертого такта опять начинается первый такт и т. д.
В четырёхтактном дизеле рабочие процессы происходят следующим образом.
Поршень движется от НМТ к ВМТ. Впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает имеющийся в цилиндре воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива.
— Такт расширения, или рабочий ход При подходе поршня к ВМТ в цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом высокого давления (ТНВД). Впрыснутое топливо, перемешиваясь с нагретым воздухом, самовоспламеняется и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. Под действием давления газов поршень перемещается от ВМТ к НМТ. Происходит рабочий ход.
— Такт выпуска Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
На этом видео показана работа реального двигателя. Камера встроена в цилиндр блока.