Из чего состоит система
Перейти к содержимому

Из чего состоит система

  • автор:

Понятие системы и конструкции. Их место в проектировании информационных систем

После прочтения комментариев к предыдущей статье Классификация конструкций: примеры и заблуждения, посвященной классификации конструкций, я понял, насколько разное представление мы имеем относительно термина конструкции. Когда я писал статью, мне казалось, что этот термин трактуется довольно просто. Но, почитав комментарии, понял, что стоит поговорить о нем отдельно.

Конструкция

Толковый словарь Ефремовой определяет два разных понятия, которые обозначаются одним термином конструкция:

  1. Состав и взаимное расположение частей какого-либо сооружения, механизма.
  2. Само сооружение или механизм с таким устройством.

Поскольку состав – это множество, то первое понятие переводится так: конструкция — это множество объектов, связанных между собой связями. При этом, судя по определению, объекты должны быть рукотворным и неживыми. То есть, нельзя представить Землю в виде конструкции, если не предположить, что ее сделали инопланетяне. Нельзя представить ДНК в виде конструкции, если только эта ДНК не создана кем-то. То есть, в определение конструкции надо добавить, что объекты рукотворные. Например, множество объектов: <фюзеляж, крылья, хвост>состоит из рукотворных объектов, и, потому, может называться конструкцией. Конструкцией под названием самолет. Замечу, что в данном контексте самолет – это не объект, а множество объектов <фюзеляж, крылья, хвост>. Можно назвать это множество самолет(к).

Сколько объектов может быть в конструкции? В определении нет ответа на этот вопрос. Но мы можем предположить, что их конечное число, большее одного, потому что в определении говорится о связях. Итого получилось: рукотворное множество объектов, созданное человеком, объекты объединены связями, множество конечное, количество элементов больше одного.

При этом нет обязательного условия, чтобы конструкция имела название, или явно был указал объект, чья конструкция рассматривается. Можно моделировать и безымянную конструкцию.

Второе понятие термина «конструкция» значит следующее: конструкция — это объект, который может быть представлен в виде множества объектов. Например, поскольку самолет как объект может быть представлен в виде множества объектов, состоящего из фюзеляжа, крыльев и хвоста, его также называют конструкцией. В данном тексте, чтобы отличить обозначение самолета как объекта от обозначения самолета как множества, можно написать: самолет(о) может быть представлен в виде множества объектов — самолета(к).

Любой объект может быть разделен на части. Неделимых объектов мы не знаем. То есть, любой объект можно назвать конструкцией? Нет. Потому что не всякий рукотворный объект можно поделить на рукотворные части. Например, отливка (болванка), являясь рукотворным объектом, не может быть поделена на рукотворные части. Поэтому болванку нельзя назвать конструкцией.

Разбирая термин «конструкция», мы обнаружили одну важную особенность языка: объект и его конструкция называются одним именем. То есть, самолет(о) и самолет(к) в быту называют одним именем: самолет. Понятно, что объект и множество объектов – это разные концепты. В словаре Ефремовой эти концепты различаются, но в быту название одно, и потому, люди часто путают их и не могут разделить эти два понятия, обозначенные одним термином. Та же проблема была в процессном подходе, в котором понятия функция, функциональная структура, сценарий и тд. назывались одним термином — процесс. Из-за этого многим аналитикам казалось, что функция и сценарий – одно и то же.

Путаница, которая возникает из-за того, что два понятия названы одним словом, проявляет себя в ответе на следующий вопрос: что такое тот или иной объект? Ответы можно разделить на два типа:

  • Первый тип ответов дает определение объектам: самолет — это летательный аппарат тяжелее воздуха с силовой установкой и крылом, создающим подъемную силу.
  • Второй тип ответов дает определение конструкциям: самолет – это крылья, двигатели, фюзеляж и хвост.

Другой пример: поезд – состав, сцепленных между собою железнодорожных вагонов, приводимых в движение локомотивным или моторным вагоном. В данном контексте дается определению поезду(к). Можно сказать, что поезд — это длинное транспортное средство для перевозки пассажиров или грузов по железной дороге. Это – определение поезда(о). Интересно, что в словарях можно найти определения как тем, так и другим понятиям.

В быту мы не замечаем разницы между такого рода определениями. Например, группе аналитиков показывается макет производственной линии. Каждый при этом может увидеть совершенно разные картины. Один увидит объект под названием «производственная линия», другой – конструкцию, имеющую то же название. Поскольку, объект и его конструкция – совершенно разные понятия, то увидят они совершенно разные вещи. До тех пор, пока они не договорятся о едином взгляде на этот макет, они будут говорить о разных объектах. Хорошо, если контекст заставит их сойтись на одной точке зрения. Однако, это происходит не всегда. Этап, на котором выясняется предмет обсуждения обычно пропускается. Из-за этого возникают ошибки в понимании. Та же проблема возникает, когда мы хотим строить онтологическую модель. Например, если мы хотим выяснить сложность конструкции самолета при помощи атрибута: «количество конструктивных элементов самолета», то надо найти объект в модели, которому приписать этот атрибут. Приписать его самолету(о) нельзя, потому что разделить самолет на части можно множеством способов. Поэтому, это атрибут должен быть отнесен ко множеству объектов, но не к объекту.

Система

Посмотрим, как справляется с данным терминологическим парадоксом системная инженерия. Системная инженерия дает определение системы так:

  • Множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность.
  1. Множество объектов конечное, кстати, больше двух?
  2. Существуют связи между объектами
  3. Из множества и связей может быть синтезирован объект

Если для конструкций отношение между объектом и его конструкцией называлось так: «конструкция объекта», то для обозначения отношения между объектом и его системой используется другой термин: «строение объекта». Например, строение человека связывает человека(о) с человеком(с). Кстати, интересно, почему нет термина «система объекта» по аналогии с термином «конструкцией объекта»?

Можно ли назвать системой объект, а не множество объектов? То есть можно ли применить термин система к объекту так же, как термин конструкция применить к объекту? Скорее всего, — можно. Например, говорят, что система обладает эмерджентностью. Формально этот тезис переводится так: свойства объекта, строение которого представлено в виде исследуемой системы, отличны от свойств элементов этой системы. Поскольку в данном контексте объект назван системой, то объект тоже можно назвать системой.

Поскольку любой объект может быть разделен на части, то любой объект может быть назван системой. Это отличает термин система от термина конструкция, потому что не любой объект может быть назван конструкцией.

Мне кажется, чтобы ликвидировать коллизии, которые могут возникнуть у инженера, читающего книги по системной инженерии, в словари стоит внести второе определение термина система по аналогии со вторым значением термина конструкция:

  • Системой также называется объект, чье строение может быть представлено в виде системы.

Можно ли распространить на системы тезис о том, что любой объект может иметь разные структуры в зависимости от наблюдателя? Да, можно. Мы прекрасно знакомы с двумя разными парадигмами строения человека, которые порождают разные структуры: внутреннее строение и внешнее строение человека.

В системной инженерии также существует требование, которое накладывает ограничения на множества возможных объектов. Речь об эмерджентности. Объект, чья структура представлена в виде системы, должен обладать свойствами, отличными от свойств элементов системы. При этом возникает два вопроса:

    Кто определяет если ли у множества объектов эмеджентность, или ее нет? Например, пусть есть участки трубопровода. Конструкция из этих участков образует более крупный участок трубопровода. Этот участок обладает новыми свойствами? Если нет, то системная инженерия не сможет назвать конструкцию из участков трубопровода системой. Если же найдется субъект, который скажет, что новые свойства есть, то множество участков превратится в систему. То есть, решение о том, является ли множество объектов конструкцией, или не является, принимает субъект. Кто он? Кстати, аналогичная проблема есть в определении бизнес-процесса в той его части, где процесс, по словам автора определения, должен иметь цель. Получается, что один и тот же процесс в зависимости от того, кто на него смотрит, может быть процессом, а может и не быть.

Обобщение понятия конструкция

Теперь попробуем обобщить понятие конструкция(к) и система(с) на более широкий класс объектов и множеств. В своей статье я именно это и хотел сделать. Видимо, без текущего вступления это было не понятно. Я ввел понятие обобщенной конструкции(к), которая отличается от общепринятого понятия конструкции следующим:

  1. Обобщенная конструкция обозначает множество объектов, связанных между собой связями, но не обозначает синтезированный на этом множестве объект. Это позволяет мне не указывать приставку (к) после термина конструкция.
  2. Обобщенная конструкция может включать в себя множество элементов, состоящее из любого количества объектов. Это значит, что может быть пустое множество, множество, состоящее из одного объекта, множество, состоящее из счетного количества объектов, континуума объектов и тд.
  3. Множество может состоять из множеств объектов.
  4. Объекты могут быть любой природы.
  5. Эмерджентность и прочие возможные критерии не являются обязательными условиями для обобщенной конструкции.

Получилась такая иерархия классов: Обобщенная конструкция – это самое широкое множество, подмножеством которого являются системы и конструкции.

Введение обобщенной конструкции понадобилось мне для приведения к единому виду всех структур, которые мы создаем для описания различных конструкций, а также для описания тех ограничений, которые возникают при упрощении этих структур.

Например, чаще всего, моделирование конструкций производится при помощи связей «часть-целое». При этом информацию о конструкции (средняя масса элементов конструкции, например) мы передаем в модель объекта, конструкцию которого мы моделируем. Ограничения такого способа моделирования в том, что мы не можем создать несколько различных конструкций одного объекта, будь то конструкций в разных парадигмах, будь то конструкций в одной парадигме, но отличающихся версиями.

Однажды мне была поставлена задача смоделировать различные версии конструкции одного космического аппарата. Версии существовали одновременно во времени и моделировали различные версии конструкторских решений. К тому же сами версии менялись во времени, потому что конструкторские решения эволюционировали с течением времени. Без введения понятия конструкция решить такую задачу было можно, но выглядело это очень странно. Похожая задача решалась мной при моделировании планов производства работ, которых одновременно было несколько версий: оптимистичный, пессимистичный и реальный. При этом план производства работ, в свою очередь, был частью другого плана производства работ. И таких этажей было 5. До ввода в модель объектов, моделирующих конструкции, моделирование выглядело так: множество связей «часть-целое», «раскрашенных» в разные цвета. «Красные» связи моделировали одну конструкцию объекта, «зеленые» — другую. «Цветов» было много и существовала проблема стыковки разных цветов. Фактически, эти «цвета» моделировали различные точки зрения на конструкцию объекта, не называя это явно. То же приходилось делать со свойствами объекта, которому были переданы свойства конструкции: у нас были «красные» значения свойств и «зеленые». Так мы выходили из положения до введения понятия «конструкция». Мне интересно, как моделируется подобный кейс в стандарте ИСО 15926?

Другой практический кейс: ЛЭП с одной стороны, может быть поделена на трассы, каждая трасса — на провода. С другой стороны, каждая трасса может быть поделена на участки трассы между опорами и тд.

Таким образом, ЛЭП можно разобрать на части разными способами. И каждый способ решает конкретную практическую задачу. Как в данном случае должен смоделировать эти конструкции аналитик, руководствуясь стандартом ИСО 15926?

Есть интересный прием деления одного и того же объекта на части разными способами. Этот прием работает, когда объекты, на которые мы делим объект, относятся к разным предметным областям. Например, один и тот же объект мы можем назвать предприятие, а можем назвать функция. Это две разные парадигмы представления одного и того же. Тогда функции мы делим отдельно, предприятие – отдельно. В принципе, если можно добавлять новые типы объектов, то та часть проблем, которая связана с моделированием объектов в разных парадигмах, закрывается этим способом.

Моделирование конструкций при помощи связей «часть-целое» довольно распространено, потому что сильно сокращает объем модели и упрощает алгоритмы работы с ней. Поэтому часто, аналитики используют такой способ моделирования. Однако, этот способ накладывает ограничения на количество одновременно существующих версий конструкций, заставляет все отрасли предприятия работать с одной моделью конструкций, даже, если для кого-то эта модель является контрпродуктивной. При этом, если речь идет о конструкции объектов, то разные отрасли предприятия еще могут как-то договориться, то при моделировании функциональных структур, подобная договоренность становится, на мой взгляд, невозможной. Поэтому, возвращаясь к стандарту ИСО 15926, боюсь предположить, что он был заточен для моделирования только двух точек зрения на происходящее и существующее. Для этого в нем есть два типа объектов: физические и функциональные. При этом каждый раз при моделировании двух точек зрения модельеру приходится делать непростой выбор между тем, что назвать физическим, а что назвать функциональным объектом. Потому что и та и другая конструкции могут одновременно оказаться функциональными, или одновременно физическими объектами. Например, участок ЛЭП между опорами – это физический, или функциональный объект? Можно сказать, что физический, но, если заказчик скажет, что функция этого участка – перенос энергии на расстояние, то участок ЛЭП между опорами станет функциональным объектом, и смоделировать две разные конструкции одной ЛЭП не удастся. Или, более очевидный пример: молекула водорода, с одной стороны, состоит из атомов (одна система), а, с другой стороны – из ядер и электронов (другая система). Понятно, что природа этих систем одинаковая – физическая. Как ИСО 15926 будет моделировать эти две разные физические конструкции?

Проблема с ООП программированием та же: конструкция в ООП моделируется при помощи агрегации объектов, фактически, связей «часть-целое» Я не могу представить себе в ООП объект, который может быть представлен в виде разных конструкций. Потому что ООП также заточен под моделирование конструкций, но только с одной точки зрения. В ООП нельзя построить даже двух разных конструкций одного объекта. Как в ООП смоделировать тот факт, что ЛЭП состоит из трасс и одновременно состоит из участков ЛЭП между опорами?

Место конструкции в процессе мышления

Еще несколько слов о месте конструкции в нашем мышлении, а, следовательно, моделировании. Есть два пути достижения понимания – синтез и анализ. Когда мы делаем анализ, мы представляем себе объекты в виде обобщенных конструкций, когда синтез, наоборот, обобщенные конструкции представляем в виде объектов. Совершая анализ, мы пытаемся понять, как устроен объект, совершая синтез, мы пытаемся упростить модель, генерализируя ее. Получается цепочка: …объект – его конструкция – объект (элемент этой конструкции) – конструкция объекта – объект (элемент этой конструкции) – конструкция объекта… Далее я не буду повторять «обобщенная», потому что буду подразумевать всегда этот класс конструкций. Начинать моделирование можно как с объекта, так и с конструкции. Двигаться можно как вниз, так и вверх по иерархии объектов, совершая анализ, или синтез. По-другому это можно представить, как приближение к объектам или удаление от них. Приближаясь, мы делаем анализ, делая описание более подробным, удаляясь – синтез, или обобщение. Довольно забавно, но в современных стандартах моделирования я много читал про декомпозицию, но очень мало про композицию. Если встречается что-то, посвященное композиции, об этом пишется непонятными словами, которые довольно сложно трактовать. Например, когда мы собираем статистику по операциям в соответствии с методологией Шухарта, мы получаем параметры объектов (функций), но сами объекты при этом не называем. Когда мы моделируем процессы и декомпозируем операции, почему-то мы не можем делать обратной операции – композиции процессов в операции. Или сам процесс описания предметной области почему-то назван «анализ». Но почему не «синтез»? На мой взгляд, аналитик занимается и тем и другим процессом: и синтезом, и анализом. Строя статистические отчеты, мы занимаемся синтезом, разбирая объекты на части, — анализом.

Но даже с анализом, который вроде, должен быть хорошо описан в стандартах, возникают сложности при реализации.

    Зачастую типы объектов, на которые (объекты, а не типы) моделируемый объект может быть разделен, заданы жестко в стандарте, коде, структуре данных. Например, в стандарте может быть сказано, что ЛЭП делится на трассы. Но для других практических задач (например, для бригад, обслуживающих ЛЭП), этого деления недостаточно. Для них надо, чтобы для решения одних задач ЛЭП делились на трассы, а для решения других — на участки ЛЭП между опор. Если стандарт не позволяет это сделать, то при решении некоторых практических задач приходится обходиться костылями.

Конструкция должна помочь нам узнать об объекте что-то новое. Например, рассмотрим плоскую фигуру, частями которой тоже будут плоские фигуры. Возможность такого деления позволяет нам ввести понятие меры Жордана, которая, в свою очередь, позволяет нам ввести понятие площади. Благодаря делению объекта на себе подобные объекты, мы смогли ввести понятие меры. Таким образом, деление воды на воду позволяет нам узнать о воде что-то новое – ее объем. Поэтому деление воды на воду я бы тоже назвал конструкцией, а в определение конструкции зашил тезис о том, что она служит инструментом для достижения понимания.

Ограничения стандартов моделирования

Чего не хватает в стандартах моделирования? Прежде всего, описание класса задач, которые они решают. Стандарты хороши тем, что позволяют разным субъектам создать модель, понимаемую ими одинаково в рамках задач, которые они решают, автоматизировать решения этих задач, наладить обмен информацией между разными информационными системами в рамках решаемых задач и тд. Что плохого в них? Плохо, что в стандартах плохо, а зачастую никак не описаны границы их применения. Поэтому стандарты, заточенные под решение одного класса задач, стремятся распространить на решение другого класса. Если круг задач очерчен, то попытка решить задачу, выходящую за этот круг, должна приводить к изменению стандарта, или отказу от него.

Сейчас становится популярна задача создания единой информационной модели на основе единого онтологического базиса. При этом в качестве основы часто берут какой-то отраслевой стандарт и пытаются отмаппить решение всех задач на этот стандарт (то есть пытаются использовать его как базис, чтобы потом расширить). Но это невозможно, хотя бы потому что разные отрасли деятельности человека производят деление объектов разным способом. Поэтому добавление в единую информационную модель новых знаний связано с созданием новых конструкций и новых объектов, которые надо маппить на уже существующие объекты и конструкции.

система

13.12.2020. НЕОКОНОМИКА или новая экономическая теория использует те же слова, включая и слово система, которые используют марксизм и ЭКОНОМИКС, как в англосаксонских странах называется неоклассическая экономическая теория. Так как теория систем является разделом точных наук, то новая экономическая теория принимает определение системы [u]без критики[/u], так что понятие системы, оставаясь допущением, уже своим употреблением попадает в твердое ядро фактически в качестве аксиомы. Термин система в разделе система в словаре обладает однозначностью, потому феномен системы я смело использую для критики теории предельной полезности и теорию принятия решений. Самое распространенное в мире значение слова система обычно находится на сайта ВикипедиЯ, где я нашел ортодоксальное описание системы, которое должен сохранять, так как НЕОКОНОМИКА строится как научно-исследовательская программа.

ВНИМАНИЕ! Так как сайт Дизайн нового мира это экономический сайт, больше того — основная тематика сайта есть ЭКОНОМИЧЕСКАЯ АНТРОПОЛОГИЯ, то расширенная статья про систему оказалась не нужна. Изучающим ортодоксальные дисциплины РЕКОМЕНДУЮ сразу перейти в статьи:

  • системаструктураобществовзаимодействиепредметсубъектсоциальная группа
    иерархия в википедииэкономическая системагруппа людейраспределение

ПЕРЕЙТИ в рубрику ЭКОНОМИЧЕСКАЯ АНТРОПОЛОГИЯ

Понятие система

Понятие система Википедия описывает следующим образом:

Система (слово система происходит от др.-греч. Σύστημα) — целое, составленное из частей; соединение) — множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. ВикипедиЯ

Разными авторами системой называется разная сущность, так как само понятие система двойственно — с одной стороны оно используется для обозначения объективно существующего феномена, а с другой стороны под определение система подпадает субъективная модель реальности, которую создает человек, изучающий свойства вселенной.

модель структуры системы

Схема структура системы с сайта avtoelect.ru

Сущность системы

Сущность системы можно понять на противопоставлении с понятием хаоса, в котором невозможно выделить отдельные части, а значит, и нет взаимодействий между ними. Собственно хаос не дает информации – так как там нечего наблюдать. Все, что доступно человеку не может быть хаосом, так как имеет какие-то свойства, по которым мы его можем изучать.

К счастью, вселенная обладает свойством делиться на некоторые сущности – отдельные части (элементы), которые вступают в какие-то связи с другими частями вселенной. Человеческое сознание способно выделять объединения (множество) частей, которые взаимодействует друг с другом, образуя другую сущность – другую часть вселенной, свойства которой не равны сумме свойств ее элементов – отдельных частей в нее входящих.

Например, вода H2O – является результатом взаимодействия атомом двух газов – водорода и кислорода. Свойства жидкой воды — практически химически нейтральной — разительно отличаются от свойств составляющих ее элементов — водорода H и кислорода O, которые по отдельности образуют крайне активные газы.

Термин система

Тем читателям, кто хочет получить научное определение система, я посоветую статью: Система Разумовский О.С. на сайте Института исследований природы времени, откуда я позаимствовал несколько цитат.

Система — это обособленный пространственно, ограниченный хронально, изменяющийся во времени и относительно самодостаточный фрагмент мира и организованная целостность, состоящая из частей (элементов и др.), объединенная разного рода отношениями, которая обладает общим особым качеством (эмерджентность), не равным сумме свойств входящих в это целое частей.

Понятие элемент системы

Человечество пока не может изучать то, что находится внутри элементарных частиц и за пределами видимого космоса. Для людей – там находится хаос, но в пределах доступной части вселенной ее изучение происходит через изучение ее систем, которые как матрешки включают друг друга в сложном сочетании.

Самое простое – рабочее определение системы — система это совокупность — «множество элементов (объектов), находящихся в отношениях и связях друг с другом и образующих целостность или органическое единство (Дж.Клир)».

Что значит система

Система содержит не менее двух элементов (ведь взаимодействие подразумевает не менее двух объектов), но и сама является элементов боле сложной системы.

Примером простейшей системы являются два элемента A и B, которые вступают во взаимодействие : A B. Уже эти системы могут иметь довольно сложную структуру: равности элементов или подчинения одного элемента другому. Когда в системе есть третий элемент C, четвертый D и так далее, то число и разнообразие взаимодействий многократно возрастает, особенно за счет появление подсистем, которые взаимодействуют как с отдельными элементами, так и с другими подсистемами.

Отличительным свойством Системы является ее связность. Но это не просто наличие связей в Системе. Здесь формально противоположным будет понятие «бессвязности» как отсутствии связей. Но последнее приведет к отсутствию Системы. О чем же тогда говорить? Связность – это характеристика взаимосцепленности целого и частей, их тесноты отношений, слитности в противовес рыхлости, аморфности, относительных нецельности, разобщенности частей, разорванности, пористости, нестройности, дисгармонии и т.п. В свое время, на характеристики скважности и дискретности целого обращал внимание П. А. Флоренский.

Изучение систем – это есть изучение внутренней структуры данной системы и той части структуры внешней системы, по отношению к изучаемой, которая определяет ее существование во времени. Все структуры являются временными сущностями: они образуются, существуют и «умирают», распадаясь на отдельные элементы (или подсистемы) или вступают в новые взаимодействия в качестве элементов уже другой системы (внешней).

Всю вселенную можно представить как бесконечное множество рождающихся и умирающих систем. Собственно причиной для изучения систем (природа или вселенной) является желание человечества (и отдельного человека) найти способы сохранить себя как можно дольше во времени, как одну из самых сложных систем.

Среда Системы – это и весь мир, и пространство, заполненное другими Системами, сетями, сотами, агрегациями и хаосом, с которыми взаимодействует данная Система. При этом, выделяют среду вообще (мир как таковой) и актуальную среду, откуда (через границу) Система черпает ресурсы для существования и куда она устремляется в случае своего роста, расширения и разделения (в т.ч. размножение), куда она отводит ненужные ей (результаты) продукты жизнедеятельности (как в метаболизме, например).

Общая теория систем

Научная и методологическая концепция исследования объектов, представляющих собой системы, называется ТЕОРИЯ СИСТЕМ. Она тесно связана с системным подходом и является конкретизацией его принципов и методов.

Дальше вы найдете важную выдержку про общесистемные принципы и законы из статьи Общая теория систем.

Общесистемные принципы и законы

Как в трудах Людвига фон Берталанфи и в сочинениях Александра Богданова, так и в трудах менее значительных авторов, рассматриваются некоторые общесистемные закономерности и принципы функционирования и развития сложных систем. Среди таковых традиционно принято выделять:

Что такое система?

Что такое системы, каковы воплощаемые ими ключевые идеи, как о них мыслить и чем они важны. Что мы понимаем под «системой»? Мы используем это слово в его бытовом, интуитивном понимании.

Система есть сущность, которая в результате взаимодействия частей может поддерживать свое существование и функционировать как единое целое.

Системное мышление обращено к целому и его частям, а также связям между частями. Оно изучает целое, чтобы понять части. Оно противоположно редукционизму, т. е. представлению о целом как о сумме составляющих его частей. Набор не связанных между собой частей не образует системы. Это просто беспорядочное нагромождение.

Если сконцентрировать внимание на характере связей, существующих между элементами системы, а не на самих частях, то открывается поразительный факт. Системы, состоящие из частей абсолютно разной природы, имеющих совершенно несхожие функции, подчиняются одним и тем же общим законам организации. Их поведение зависит не от природы и свойств образующих их частей, а от того, как эти части соединены между собой. В силу этого можно предсказывать поведение систем, даже если у нас нет детальных знаний об их частях. Следуя одним и тем же принципам, можно понимать и оказывать влияние на самые разные системы — свое тело, бизнес, финансы и отношения. Системное мышление освобождает от необходимости посвящать годы изучению отдельных областей знаний и позволяет увидеть связь между разными дисциплинами. Оно дает возможность предсказывать поведение систем, будь то дорожная сеть, система ценностей и убеждений, пищеварительная система, управленческая команда или маркетинговый проект.

Система Нагромождение
Взаимосвязанные части функционируют как целое Совокупность разрозненных частей
Изменяется, если что-либо убрать или добавить. Разделив систему надвое, вы получите не две меньшие системы, а поврежденную и, вероятнее всего, нефункционирующую систему Основные свойства не изменятся, если что-либо добавить или убрать. Разделив надвое, получите два нагромождения поменьше
Компоновка, взаимное расположение частей имеет решающее значение Расположение частей не имеет значения
Части взаимосвязаны и работают вместе Части не связаны между собой и могут функционировать отдельно
Их поведение зависит от структуры. При изменении структуры меняется поведение Их поведение (если оно есть) зависит от размера или от числа предметов, составляющих нагромождение

Почему так важно системное мышление? Потому что, как уже было отмечено, все мы представляем собой системы, живущие в мире систем. Мы находимся в чудовищно сложной системе природного окружения и строим большие и малые города, которые также представляют собой системы. Мы используем механические системы, такие как автомобили, компьютеры и автоматизированные производства. Мы говорим о политических, экономических и идеологических системах. Каждая из них действует как функционирующее целое, объединяющее множество отдельных частей (хотя насколько хорошо они функционируют, это уже другой вопрос). Системы бывают простыми, такими как центральное отопление, поддерживающее стабильную температуру в помещении, или очень сложными, такими как погода. В наши дни мы столкнулись с беспрецедентными проблемами, появившимися в результате воздействия загрязнений и технологий на систему, которую мы называем «природная среда». Куда ни глянь — всюду системы. Вы изучаете молекулы, клетки, растения, животных как системы, но и сами состоите из клеток, которые образуют системы органов под управлением нервной системы. Вы — часть семейной системы, которая, в свою очередь, является частью какого-то жилого района, а он в совокупности с другими жилыми районами образует город, регион и страну. Все это — вполне самостоятельные системы, одновременно представляющие собой части некоей большей системы. Сама планета Земля может рассматриваться как система, как часть Солнечной системы, как часть Галактики и даже Вселенной. Мы используем слово «системы», не задумываясь над тем, что они «вплетены» во все, что мы делаем. Необходимо понимать, как работают системы, чтобы иметь на них больше влияния и сделать свою жизнь лучше.

Таким образом, система — это множество частей, действующих как единое целое. В свою очередь, она может состоять из множества более мелких систем или быть частью более крупной. В человеческом теле, например, есть система пищеварения, иммунная система, система кровообращения и нервная система. Любую из них можно изучать изолированно или с точки зрения их взаимодействия во вмещающей их большей системе — организме человека. Автомобиль — это механическая система, состоящая из различных подсистем: охлаждения, подачи топлива и внутреннего сгорания. Благодаря их согласованной работе автомобиль способен двигаться и доставлять вас куда нужно. Вы и не думаете обо всех этих малых системах, пока автомобиль не сломается. Вот тогда-то вы обнаружите, почему упрощенческий подход, основанный на сведении целого к простой сумме его составляющих (редукционизм), не может вам помочь. Все части автомобиля на месте, но если они не способны слаженно работать, то это просто груда металлолома.

Создаваемые человеком системы имеют пределы роста. При прочих равных условиях в какой-то момент одна из них становится слишком громоздкой, плохо управляемой и склонной к поломкам. Когда системы разрастаются, имеет смысл дробить их на более мелкие и создавать промежуточные уровни управления и контроля. В бизнесе, например, команда из шести человек может успешно работать, но 600 человек ничего не смогут сделать, если их не разбить на группы. В природе также есть верхняя граница жизнеспособности. В мире систем большее не означает лучшее, обычно оно бывает хуже. У каждой из них есть свой оптимальный размер, и если сделать систему намного больше или меньше определенного параметра, сохранив все остальные условия, она не будет функционировать.

Возникновение системных свойств — водовороты и радуги

Из нашего простого определения системы следуют поразительные выводы. Во-первых, системы функционируют как целое, а это значит, что у них есть свойства, отличающиеся от свойств составляющих их частей. Они известны как эмерджентные * , или возникающие, свойства . Они «возникают», когда система работает. Вообразите сто слегка отличающихся друг от друга картинок Микки Мауса. Ничего интересного. А теперь быстро пролистайте их одну за другой, и Микки оживет. Вы получили мультфильм. Если между соседними картинками совсем небольшая разница, Микки будет двигаться очень плавно. Это и есть эмерджентное, или возникающее, свойство.

Поскольку мы постоянно видим проявление этих свойств, то принимаем их как данность. При этом они зачастую непредсказуемы и удивительны. Эмерджентные свойства возникают в системах подобно тому, как внезапно с плоского листа, содержащего беспорядочные цветные картинки, на вас «выпрыгивает» объемный, трехмерный образ. Когда вы их разглядываете, то совершенно невозможно предсказать, какое объемное изображение скрывается за этими картинками. А понаблюдайте за турбулентным потоком воды в реке. Никакое знание о молекулярном строении воды не может подготовить вас к появлению водоворотов. (Так же, как и к тому, что вода мокрая!) Мы можем всю жизнь изучать акустику и звуковые волны, но это не поможет понять красоту и эмоциональную власть музыки. Благодаря тому, что мы имеем пару глаз, мы не просто расширяем поле зрения, но и воспринимаем мир объемно. Благодаря паре ушей наш слух не становится вдвое лучше, но мы слышим стереозвучание. Соединив вместе все краски спектра, мы получаем не бурую грязь, а белый свет. Эти повседневные чудеса принимаются нами как данность, но разве вы могли бы их предсказать, если бы не знали о них заранее? Возникновение эмерджентных свойств можно сравнить с радугой, когда капли дождя, воздух и угол падения солнечных лучей абсолютно правильно сочетаются между собой.

Похоже, что наш мозг наслаждается творением эмерджентных свойств. И не забывайте, что мы сами — часть системы, потому что без наших органов чувств эти свойства не существовали бы.

Сознание — тоже системное, эмерджентное свойство. Кто мог бы предвидеть, что миллиарды соединений между нейронами сделают возможным самосознание? А все ваши чувства — часть вашего «Я». Это вы обладаете способностью видеть, а не ваши глаза. Положите глаз на стол — он ничего не увидит. Ни в одной части тела не найти зрения, слуха, осязания, обоняния или вкуса. Вы живете лишь до тех пор, пока все части вашего тела действуют согласованно. Стоит отделить любую часть тела, и она умрет. Посмертное вскрытие обнаруживает тайну смерти, а не жизни.

Вот другой пример. Движение автомобиля — это также возникающее свойство. Чтобы двигаться, автомобиль нуждается в карбюраторе и бензобаке, но положите карбюратор или бензобак посреди дороги — далеко ли они уедут?

Гармония, равновесие в природе — это также возникающее свойство. Растения, животные, погодные условия совместно создают цветущую природную среду, хотя при этом одни животные пожирают других. В результате вмешательства в природу равновесие может нарушиться, какие-то виды вымрут, а другие будут доминировать, но в конечном итоге возникнет новое равновесие.

Системы обладают эмерджентными, или возникающими, свойствами, которых нет ни у одной из их частей. Разобрав систему на части и проанализировав каждую из них, вы не сможете предвидеть свойства целостной системы.

Разделив систему на компоненты, вы никогда не обнаружите ее существенных свойств. Они проявляются только в результате действия целостной системы. Единственная возможность узнать, что они собой представляют, состоит в том, чтобы заставить систему работать.

Эмерджентные, или возникающие, свойства

  • жизнь
  • водовороты
  • торнадо
  • температура
  • давление
  • компьютерные вирусы
  • компьютерная графика
  • эмоции
  • музыка
  • стереоскопические картинки
  • радуга
  • культура
  • огонь
  • сознание
  • нравственные нормы
  • облака
  • здоровье и благополучие
  • голод
  • смех
  • память
  • сны
  • боль

Замечательная особенность эмерджентных свойств состоит в том, что для их использования нет нужды понимать, как именно система обеспечивает их появление: не нужно быть дипломированным инженером, чтобы включить свет в комнате, а тому, кто ведет автомобиль, не обязательно понимать, как он функционирует. Вы можете играть в компьютерные игры, совершенно не подозревая о миллионах символов, образующих компьютерные программы. Вы знаете, каким образом на экране возникают изображения? Один из авторов этой книги, Джозеф, никогда не задумывался об этом. Но однажды вечером, когда он выключил компьютер, восьмилетняя дочь задала ему вопрос: «Пап, а куда деваются картинки, когда ты его выключаешь?»

— Они никуда не деваются. Компьютер просто перестает их создавать.

— А как компьютер делает такие же картинки, когда ты его опять включаешь?

— Они хранятся в компьютерной памяти.

— Ух ты! Все эти картинки?

— Нет, он, скорее, помнит, как сделать эти картинки, если мы велим ему это.

— А где его память?

Джозеф почувствовал, что тонет.

— Компьютер хранит изображения в виде двоичных кодов, которые обозначают точное положение каждой детали, поэтому он может воспроизвести картинку, когда нам это нужно.

— А где хранятся эти компьютерные коды?

— В кусочках пластика и металла внутри компьютера, они называются чипами.

— Если мы заглянем в чип, то увидим картинки?

Тут мы добрались до завесы на границе между кремниевым миром и миром зрительных образов.

— Нет, они слишком мелкие.

— А если взять увеличительное стекло?

— Нет, они больше похожи на кусочки мозаики, которые компьютер умеет собирать. Когда у тебя из коробки высыпаются кусочки мозаики, тебе приходится складывать их снова, так, чтобы каждый встал на свое место.

На девочку это объяснение не произвело сильного впечатления, но попытка объяснить компьютерную графику как эмерджентное свойство системы электрических потоков была бы еще безнадежнее. Внутри компьютера не найти картинок, так же как внутри рояля не отыскать звуков.

Мы также можем использовать понятие «эмерджентное свойство» для более благозвучного названия компьютерных вирусов. Бывает так, что вдруг, без всяких разумных причин, компьютер начинает вести себя как-то странно, хотя мы пытаемся сделать что-то такое, что до этого сотни раз получалось легко и просто. Иногда компьютер как будто начинает вредничать или, более того, даже вредить. (Вот, стоило нам написать это, как компьютер решил проявить свой норов и «завис». Он отказался печатать, запоминать и стирать что бы то ни было. Честя на чем свет стоит бесполезную груду электроники и одновременно благодаря бога за то, что за секунду до этого текст был сохранен, мы перезагрузили компьютер.)

Вторая важная особенность систем — зеркальное отражение первой. Поскольку свойства системы присущи только ей самой, но не ее частям, то стоит разделить ее на части, как эти свойства исчезнут. Разобрав рояль, мы не только не найдем там звуков, но и не сможем играть до тех пор, пока его вновь не соберут. Внутри телевизора не найти картинки, а в дождевом облаке нет радуги. Разделив систему надвое, мы получим не две поменьше, а одну недействующую.

Когда мы что-то разбираем на части, чтобы узнать, как оно работало, это называется анализом. Он может быть очень полезен при решении определенного типа проблем, а также для понимания того, каким образом малые системы образуют одну большую. С помощью анализа мы получаем знание , однако теряем возможность понять свойства системы, разбив ее на отдельные составляющие.

Дополнением анализа является синтез — создание целого из частей. С помощью синтеза мы обретаем понимание . Чтобы выяснить, как система функционирует и каковы ее эмерджентные свойства, есть только один путь — наблюдать ее в действии.

Человеческий мозг - самая сложная из известных нам структур

Самая сложная из известных нам систем

Мир — это очень сложная система. И мы нуждаемся в собственной весьма сложной системе, для того чтобы в нем разобраться.

Человеческий мозг — самая сложная из известных нам структур. При весе около 1,5 кг он состоит из более ста миллиардов нейронов, или нервных клеток — примерно столько же звезд образуют Млечный Путь. В передней части головного мозга содержится более десяти миллиардов нейронов. Связи между ними, в полном соответствии с логикой системного мышления, даже важнее, чем сами нервные клетки. У одного нейрона может быть до ста тысяч связей, в том числе около тысячи постоянных. Мозг не похож на компьютер, а вот каждая нервная клетка подобна маленькому компьютеру. В коре головного мозга более миллиона миллиардов связей. Если отсчитывать по одной в секунду, потребуется 32 миллиона лет.

Мозг любого человека уникален. Мы рождаемся с полным запасом нервных клеток, но до 70% их отмирает в первый год жизни. Выжившие нейроны образуют все более сложную сеть связей. Некоторые из них укрепляются в результате использования, а другие исчезают по мере того как мы осваиваем мир. Мозг не может быть независимым от мира, который формирует в нем систему внутренних связей.

Задача мозга в том, чтобы из огромного потока получаемой им сенсорной информации извлекать образы и ощущения. Сам акт восприятия придает ему смысл, и таким образом мозг, в свою очередь, придает форму миру, воспринимаемому нами. Интерпретация — это часть восприятия.

Ученые, изучающие мозг, описывают его как взаимосвязанную, децентрализованную, параллельно работающую, распространенную сеть обработки синхронных волн интерактивных резонансных структур. Иными словами, это очень сложная система.

Мозг сложен как раз до такой степени, чтобы мы тешили наше тщеславие и испытывали благоговейный страх перед нашим интеллектом.

Простые и сложные системы

Система обеспечивает самосохранение благодаря взаимодействию частей, поэтому отношения между ними и их взаимовлияние намного важнее их числа или величины. Эти взаимосвязи, а значит, и сама система могут быть простыми или сложными.

Сложность чего бы то ни было может проявляться двумя различными путями. Называя что-либо сложным, мы, как правило, представляем себе очень много различных частей. Это сложность, вызванная детализацией, количеством рассматриваемых элементов. Когда перед нами мозаика, составленная из тысячи кусочков, мы имеем дело со сложностью детализации. Обычно нам удается найти способ упростить, сгруппировать и организовать такого рода сложную структуру, в которой для каждой детали есть только одно место. С такой задачей хорошо справляются компьютеры, особенно если она допускает пошаговое решение.

Сложность другого типа — динамическая. Она возникает в тех случаях, когда элементы могут вступать между собой в самые разнообразные отношения. Поскольку каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены бессчетным множеством способов. Нельзя судить о сложности, руководствуясь количеством элементов, а не возможными способами их соединения. Далеко не всегда верно, что чем меньше элементов входит в систему, тем проще ее понять и контролировать. Все зависит от степени динамической сложности.

Представьте группу коллег, работающих над неким проектом в бизнесе. Настроение каждого члена команды очень изменчиво. Они могут находиться в разных отношениях между собой. Таким образом, система, даже состоящая из немногих элементов, способна обладать большой динамической сложностью. Ею, при ближайшем рассмотрении, могут отличаться проблемы, кажущиеся на первый взгляд очень простыми.

Новые связи между образующими систему частями увеличивают сложность, а появление еще одного элемента может привести к созданию множества дополнительных связей. При этом их количество увеличивается не на единицу. Число возможных связей может вырасти экспоненциально — иными словами, добавление каждого последующего элемента увеличивает количество связей в большей степени, чем добавление предыдущего. Например, представьте, что мы начинаем всего с двух элементов, А и В. Здесь возможны только две связи и два направления влияния: А на В и В на А. Добавим еще один элемент. Теперь в системе три элемента: А, В и С. Число возможных связей, однако, выросло до 6 и даже до 12, если мы сочтем возможным, что два элемента вступают в союз и совместно влияют на третий (скажем, А и В влияют на С). Как видите, для создания динамически сложной системы нужно не так уж много элементов, даже если каждый может пребывать только в одном состоянии. Мы знаем по собственному опыту: руководить двумя людьми более чем вдвое сложнее, чем одним человеком, поскольку возникают дополнительные возможности для недоразумений, а с появлением второго ребенка у родителей больше чем в два раза прибавляется и хлопот, и радостей.

Простейшие системы состоят из малого числа элементов, между которыми возможны простые связи. Хорошим примером является термостат. У него невысокая сложность детализации и небольшая динамическая сложность.

Очень сложная система может состоять из множества элементов или подсистем, и все они способны пребывать в разных состояниях, которые будут меняться в ответ на то, что происходит с другими частями. Построить схему такого рода сложной системы — все равно что найти путь в лабиринте, который полностью изменяется в зависимости от избранного нами направления. Стратегические игры, например шахматы, обладают динамической сложностью, поскольку каждый ход меняет соотношение между фигурами и, соответственно, ситуацию на доске. (Динамическая сложность шахмат могла бы быть еще выше, если бы после каждого хода фигуры могли преображаться.)

Первый урок системного мышления заключается в том, что мы должны отдавать себе отчет в том, с какого рода сложностью мы имеем дело в данной системе — с детальной или с динамической (с мозаикой или с шахматами).

Работа системы определяется отношениями между элементами, поэтому любой, самый малый элемент может изменить поведение целого. Например, гипоталамус, небольшая, размером в горошину, железа, расположенная в мозгу человека, регулирует температуру тела, частоту дыхания, водный баланс и кровяное давление. Аналогично частота сердечных сокращений влияет на все тело. Когда она ускоряется, вы испытываете тревогу или возбуждение, а когда замедляется — успокаиваетесь.

Все части системы взаимозависимы и взаимодействуют между собой. От того, как они это делают, зависит их влияние на систему.

Отсюда следует любопытное правило: чем больше у вас связей, тем больше возможное влияние. Расширяя связи, вы его умножаете. Исследования показывают, что удачливые менеджеры отдают поддержанию и расширению связей вчетверо больше времени, чем их менее успешные коллеги.

Разные элементы могут совместно влиять на целое. Различные группы людей объединяются, формируют альянсы для того, чтобы повлиять на деятельность властных структур, организаций, команд.

Система как паутина

Сложные системы пронизаны множеством связей, а потому, как правило, отличаются большой стабильностью. Здесь отлично подходит французская поговорка: Plus ça change, plus c’est le même chose — чем больше перемен, тем больше все остается по-прежнему. И легко понять, почему так происходит. Представьте себе систему в виде особого рода паутины, каждый элемент которой связан со многими другими и влияет на них. Чем больше в ней элементов, тем выше сложность детализации. Чем шире круг их возможных состояний, вариантов формирования временных альянсов, тем больше число возможных связей между ними и тем выше динамическая сложность данной системы.

Итак, представим сложную систему, сходную с паутиной, например отдельные элементы политического устройства выдуманной страны Дистопии (см. рис.). В виде подобной гипотетической системы, сходной с паутиной, можно представить и компанию, в которой будут взаимодействовать такие факторы, как установленные процедуры, должностные обязанности, системы вознаграждения и оценки персонала, а также стиль управления. Паутина может характеризовать взаимоотношения людей в организации, соотношение между элементами рекламной кампании или идеями и ценностями в системе убеждений. Она способна отражать связи между членами команды или большой, состоящей из представителей разных поколений семьи, взаимодействие частей человеческого тела.

Политическое устройство Дистопии

Рис. Политическое устройство Дистопии

В этой системе присутствует 11 элементов. Предположим, что она стабильна, все элементы совместимы и система работает. Стабильность поддерживают связи между элементами. Теперь представим, что хотим применить новый метод расчета бюджета. Но это невозможно сделать без учета всех тех элементов, с которыми он связан. Изменение метода расчета бюджета непременно их затронет. Они будут сопротивляться переменам, потому что иначе им тоже придется измениться.

В этом и состоит проблема реформ. Политическая система очень сложна, и многие начинания кончаются крахом, потому что система противится переменам. Новое правительство получает в наследство огромный бюрократический аппарат, известный своей осторожностью. Снятая ВВС телевизионная комедия «Да, господин министр» изображает незадачливого министра Джима Хакера (позднее его выдвинут на непосильную для него должность премьер-министра), который отчаянно борется с изощренно-хитроумными интриганами из своего аппарата. Что бы он ни пытался предпринять, какие бы изменения ни замышлял, каким-то образом все это неизменно вело к укреплению той самой системы, которую он хотел изменить. Чиновничий аппарат был воплощением сопротивления сложной системы быстрым переменам (да и любым другим).

Система действует как мощная эластичная сеть — когда перетягивают какой-нибудь узел на новое место, он остается там лишь до тех пор, пока его удерживают. Стоит его отпустить, и он немедленно займет прежнее положение. Если рассматривать такое упорство как часть системы, а не как локальную злонамеренность, сопротивление видится не только объяснимым, но и неизбежным.

Хороший пример — решения, принимаемые в Новый год. Представьте, что есть привычка, от которой вы хотели бы избавиться. Она вам не нравится и кажется чем-то «посторонним», что можно просто отбросить, и сразу станет лучше. Но она — элемент системы поведения и связана с множеством других элементов вашей жизни. В Новый год вы принимаете решение измениться, но привычка каким-то образом сохраняется, если не проявлять постоянной бдительности. Вы будете в напряжении — в буквальном смысле слова. Как ни старайтесь, толку не будет. Дело не в том, что привычка или стиль поведения так уж сильны сами по себе. Сила сопротивления изменениям обусловлена проявлением других связанных с этой привычкой элементов вашего поведения. Попытка удалить ее тянет за собой изменение остальных привычек и особенностей образа жизни, которые с ней связаны. С позиций системного мышления следует признать, что решения, принимаемые в Новый год, трудно выполнить.

Стабильность и принцип рычага

Степень стабильности системы зависит от многих факторов, в том числе от размера, числа и разнообразия подсистем, а также от характера и силы связи между ними. Сложные системы необязательно должны быть нестабильными. Многие из них хотя и сложны, но поразительно устойчивы и, таким образом, противятся переменам. Например, к власти могут прийти разные политические партии, но при этом демократическая система правления остается неизменной.

В семьях бывают споры и ссоры, но они из-за этого не распадаются, а предприятие может функционировать, несмотря на разногласия, существующие между его подразделениями. Точно так же какие-то органы вашего тела могут быть не в очень хорошем состоянии, но в целом вы при этом будете сохранять работоспособность. Эта стабильность чрезвычайно важна, потому что без нее ваше самочувствие будет резко колебаться, предприятия начнут работать неравномерно, а любая размолвка сможет стать причиной разрыва с близкими людьми. Общая стабильность очень важна, но за нее, разумеется, приходится платить дорогой ценой — сопротивлением к переменам.

Поэтому политические партии ведут борьбу с бюрократическим аппаратом государственной службы, а реформы постоянно тормозятся. Семьи бывают несчастливы, но не распадаются. Новые методы ведения бизнеса обычно внедряются со скрипом, потому что люди предпочитают работать по-старому. Дело не в том, что они плохие, причина — в системе. Собираясь изменить любую сложную систему — бизнес, семью или собственный образ жизни, — готовьтесь к противодействию. Где стабильность, там и сопротивление переменам, они как две стороны медали.

Реформаторы часто повторяют эту ошибку, особенно в бизнесе: они давят и давят, пока не исчерпают «запас эластичности» системы, после чего она распадается, и все несут ущерб.

Когда системы действительно изменяются, это происходит сравнительно быстро и, как правило, радикальным образом. Хороший пример — Берлинская стена. В августе 1961 г. она отделила Восточный Берлин от Западного, и потом почти тридцать лет была символом враждебности восточногерманского правительства по отношению к Западу. Но в ноябре 1989 г. правительство пало, и в порыве энтузиазма люди голыми руками разрушили стену. К этому вели многие политические и экономические факторы, процесс не был простым, но само событие произошло очень быстро и оказалось драматичным. А затем коммунистические правительства, до этого казавшиеся несокрушимыми, пали одно за другим.

Когда в системе нарастает давление в пользу перемен, она может внезапно лопнуть, как воздушный шарик. Есть порог, за которым система неожиданно изменяется или рушится. Если существует сильное давление, достаточно какой-нибудь мелочи, незаметной трещины в плотине, чтобы она рухнула под давлением накопившейся воды. Чем сильнее стресс, тем пустячнее причина, которая выведет вас из себя. Это та самая капля, которая переполнит чашу.

Так что если система достаточно долго испытывает значительное давление, она может внезапно развалиться. Если сумеете найти подходящее сочетание действий, она способна неожиданно перемениться. Такой подход требует понимания системы и известен как принцип рычага . Он достаточно прост. Представьте себе систему, построенную по принципу паутины, — с большим количеством связей между узлами. Допустим, вам нужно изменить положение одного элемента или узла. Если прямо на него надавить, он окажет сопротивление, вернее, вся система воспротивится. Но, удалив небольшое звено где-то в другом месте, можно высвободить интересующий вас элемент, как если бы вы развязали нужный узел в запутанном клубке ниток. Необходимо знать, как устроена система, чтобы найти этот узелок. Несколько лет назад один из авторов этой книги, Иан, работал в некой организации, где всем было известно: если вам нужно решить какой-то вопрос, касающийся одного из отделов, то следует прежде всего поговорить с секретаршей руководителя этого подразделения. Обращаться непосредственно к начальнику было бесполезно.

Принцип рычага и внезапность изменений оказывают влияние на то, насколько гладко функционирует система и как она себя ведет в особых обстоятельствах. Поведение сложных систем не всегда носит равномерный и непрерывный характер. Это происходит лишь в том случае, если оно предсказуемо в диапазоне возможных состояний системы. Например, вы можете опробовать автомобиль на разных скоростях, и если он хорошо слушается руля и при семидесяти, и при десяти милях в час, то можете быть уверены, что и при любой промежуточной скорости машина будет работать нормально. Можете не опасаться, что при скорости 35 миль в час она неожиданно развалится. Ее поведение будет непрерывным во всем диапазоне скоростей.

Живые организмы и их сообщества, так же как и некоторые механические системы, скажем, компьютерные программы, ведут себя совершенно иначе. При определенном наборе обстоятельств может произойти роковой срыв, и система утратит стабильность. Компьютер отказывает, человек впадает в ярость или организм заболевает. Вероятность такого исхода всегда потенциально присутствовала. Но система была слишком сложна, чтобы протестировать все ее возможные состояния и выявить ненадежные места. Две компьютерные программы прекрасно работают сами по себе, но когда их запускают одновременно, компьютер сразу «зависает». Два отличных работника могут оказаться совершенно неспособными работать вместе.

Другой пример: лекарства. Они проходят очень строгую проверку в течение долгого времени. Но, даже несмотря на это, иногда лишь спустя годы выясняется, что тот или иной препарат несовместим с другими или дает нежелательные побочные эффекты. Одновременное присутствие в организме другого лекарства или отсроченный эффект применения первого (а иногда и то и другое) — это особое стечение обстоятельств. Чем сложнее система, тем меньше надежды на то, что путем выборочного тестирования удастся выявить все потенциальные проблемы.

Тот же процесс действует, когда вы выходите из себя. Например, у вас мог быть очень неудачный день, все валилось из рук, и настроение уже было отвратительным. Затем произошло что-то вполне заурядное: какой-то водитель «подрезал» вас на дороге, кто-то «не так» посмотрел или «не то» сказал. Это была последняя капля, и вы впали в ярость.

Но во всем этом есть, разумеется, и положительная сторона. Если система может отказать при самых обычных внешних обстоятельствах, она способна столь же легко измениться в желательном для вас направлении. Стоит правильно определить ее ключевые связи, и изменение может произойти поразительно легко. Для этого нужны не героические усилия, а знание того, где находится оптимальная точка приложения рычага . Именно на нее необходимо воздействовать, чтобы с наименьшим усилием получить значительный результат. В этом и проявляется принцип рычага .

Как вы можете применить эту идею на практике? Вместо того чтобы терять силы, штурмуя систему, что может истощить и вас и ее, задайте ключевой системный вопрос: что препятствует изменениям?

Приглядитесь к связям, которые не дают сдвинуть тот узел, который вы хотели бы переместить. Обрубите их или ослабьте, и все изменится само собой. Это — главный принцип системного мышления.

Некоторые части системы важнее других, потому что они в большей степени определяют ее поведение. Травма головы намного опаснее, чем травма ноги, потому что мозг в большей степени контролирует тело, чем нога. Если провести изменения в головном офисе компании, последствия скажутся во всех местных отделениях. А если вы поменяете менеджера местного отделения, вряд ли это отразится на политике компании, хотя и такое возможно — сложные системы полны сюрпризов. Как правило, чем большей степенью контроля над системой обладает та часть, которую вы изменяете, тем глубже и масштабнее будут последствия.

Побочные эффекты

Связанность элементов системы порождает еще одну закономерность в их поведении. Когда вы изменяете одну ее часть, последствия вашего поступка можно сравнить с кругами, которые расходятся от брошенного в воду камня. Эхо ваших действий может повлиять на другие части системы, а через них и на следующие, еще более отдаленные от точки первоначальных изменений.

Имея дело с системой, невозможно осуществлять точечные изменения.

Хороший пример — все те же лекарства. У любого из них есть побочные эффекты. Вопрос только в том, заметны ли они, а если да, то насколько опасны или неприятны и можно ли ими пренебречь ради положительного эффекта от приема данного лекарства. Антибиотики, например, очень эффективны при лечении бактериальных инфекций. При этом они убивают как болезнетворные бактерии, так и полезные, образующие флору кишечника, но с этим недостатком есть смысл мириться.

Побочные эффекты от приема лекарств могут проявиться спустя годы, поэтому бывает трудно установить связь между причиной и следствием. Например, стероидные препараты используют для лечения целого букета болезней: различных воспалений, астмы, экземы и артритов. В то же время они вызывают нарастание мышечной массы, гипертонию, диабет, тучность, бессонницу, перепады настроения, нарушения менструального цикла и остеопороз. Все это перечислено в официальном медицинском «Настольном справочнике врача». Чем сильнее лекарство, тем вероятнее проявление побочных эффектов.

Порой они бывают и полезны. Например, аспирин — не только прекрасное обезболивающее, но еще и разжижает кровь. Он оказался дешевым, общедоступным и известным средством, широко используемым для предотвращения инфарктов у пожилых людей и лиц, страдающих от сужения кровеносных сосудов. У аспирина есть и неприятные побочные эффекты. Он может вызывать расстройство желудка, тошноту, а иногда — аллергические реакции и анемию, поскольку способен выводить из организма важные витамины и минеральные вещества, в частности железо.

Мы очень осторожны при приеме лекарств, но намного легкомысленнее обращаемся с их аналогами, используемыми в сельском хозяйстве, — пестицидами и химикатами. Дурную славу снискал себе инсектицид ДДТ, изобретенный в 1939 г. (кстати, открывший его ученый получил за это Нобелевскую премию). ДДТ использовался фермерами для уничтожения насекомых и оказался очень эффективным средством борьбы с малярийными комарами. Однако к 1950 г. появилось немало свидетельств тому, что ДДТ токсичен для многих животных. В 1970 г. его использование наконец поставили под жесткий контроль, но к этому времени ДДТ уже прошел по всем звеньям пищевой цепи и был обнаружен в тканях человека.

Кстати, долгосрочная эффективность ДДТ как инсектицида также оказалась не слишком высокой. Вначале насекомые поедали ДДТ и погибали, но при этом насекомоядные питались отравленными насекомыми. Когда начали погибать насекомоядные, популяция насекомых (к тому же приобретших невосприимчивость к ДДТ) начала расти, и в конечном счете их стало больше, а не меньше.

Нужно иметь в виду, что в настоящее время массово используется более 65 тыс. промышленных химикатов, и ежедневно на рынок поступает еще пять. 80% этих химикатов не проходили испытаний на токсичность. (3) Лишь спустя долгое время мы на собственной шкуре начали чувствовать побочные эффекты от их использования.

Вот еще один принцип системного мышления:

Будьте готовы к побочным эффектам.

Они могут быть неожиданными и даже неприятными. Но когда вы поймете систему, то сможете их предвидеть и планировать изменения таким образом, чтобы дело ограничилось незначительными побочными эффектами. Не исключено, что, используя принцип рычага, вы сможете получать дополнительное благоприятное изменение в качестве побочного эффекта.

В качестве примера возьмем семью, в которой один из детей, десятилетний Том, создал конфликтную ситуацию в школе. Он задирался и вступал в драки с другими детьми. Кроме того, он вел себя в классе вызывающе, постоянно старался привлечь к себе внимание учителя. Тот поговорил с родителями, и они сошлись на том, что ситуация требует вмешательства специалиста. После нескольких бесед с консультантом-психологом обнаружилось, что «точкой приложения рычага» было отношение родителей к дисциплине. Они очень много позволяли сыну, потому что хотели, чтобы мальчик рос уверенным в себе человеком и сам научился правильным нормам поведения. Они считали, что дети лучше и основательнее осваивают допустимые границы поведения, если нормы не навязываются сверху, а познаются на собственном опыте. Этот способ отлично подходил для их старшего сына, но Тому явно требовались более четкие ориентиры. Он нуждался в том, чтобы ему говорили, что можно, а чего нельзя. Не обладая ясным пониманием границ допустимого, мальчик чувствовал себя неуверенно и продолжал искать, где они проходят.

По совету психолога родители начали руководить поведением Тома. Несколько недель были трудными, но потом он изменился — стал более спокойным, прекратил драться в школе, научился самостоятельно работать на классных занятиях. Парадоксально, но родители получили желаемый результат, действуя в направлении, противоположном первоначальному. Эффект изменения коснулся не только Тома, но и передался его родителям, старшему брату и дошел даже до школы. Учитель почувствовал себя увереннее и спокойнее, так что всему классу стало лучше.

В этом примере изначальная ситуация никого не радовала, и возникла она не по чьей-то вине. Все понимали, что ее нужно изменить, но как? Предпринятые действия были призваны повлиять на убеждения родителей Тома и через них — на него самого. Родители изменили свое поведение, а в результате и Том стал другим.

Мы увидим, что в любой системе важнейшей точкой приложения рычага служат убеждения людей, образующих систему, потому что именно убеждения поддерживают систему такой, какова она есть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *