Шпг что это такое в машине
Перейти к содержимому

Шпг что это такое в машине

  • автор:

Динамические законы ШПГ на примере двигателей семейства М30. Часть 1

Внимание.: Данная статья содержит мнение автора за год до продолжения цикла статей, где вопрос R/S был изучен более глубоко. Оставлена статья в качестве отражения хода мыслей автора.
__________________________________________________________________

Ранее мы рассмотрели законы преобразования сил в двигателе достаточно подробно. Но очевидно, что у многих от формул возникает пелена перед глазами, а в голове образуется туман. Особенно, когда речь идет о формулах, которые не умещаются в одну строку и содержат много скобок.

Сегодня я постараюсь наглядно отобразить, сколько же это в попугаях на примерах геометрических характеристик моторов BMW семейства М30.

Для начала вспомним, к чему же мы пришли:

Простыми преобразованиями сил давления газов и инерции мы получили теоретическое значение мгновенного крутящего момента, т.е. значения крутящего момента при определенных параметрах в определенный момент времени. Без ускорения коленчатого вала (т.е. двигатель вращается с постоянной частотой) это будет выглядеть так:

Мкр = r * [((Р — Рк) * п * D^2 / 4 — (mп + mшп) * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — (mшк + mшш + 2*mщк) * r * w^2]

Это выражение очень пугает своей длиной и дотошностью. Совершим для наглядности следующее преобразование, которое не позволит потерять суть:

Мкр = r * [(Рг * п * D^2 / 4 — mвп * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — mв * r * w^2],

где
Рг = Р — Рк, т.е. результирующее давление газов,
mвп = mп + mшп, т.е. суммарная возвратно-поступательная масса,
mв = mшк + mшш + 2*mщк, т.е. суммарная вращательная масса.

Сделаем очевидный вывод, что крутящий момент прямо пропорционален радиусу кривошипа и запишем только выражение для вращающей силы:

Fв = (Рг * п * D^2 / 4 — mвп * w^2 * r * < cosф + cos2ф * r / l >)*sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)) — mв * r * w^2

Теперь разобьем вращающую силу отдельно на составляющие и рассмотрим их детально:

Fв = (Fг + Fивп)* k + Fив,

где
Fг = Рг * п * D^2 / 4, т.е. сила давления газов на поршень
Fивп = — mвп * w^2 * r * < cosф + cos2ф * r / l >, т.е. сила инерции возвратно-поступательных масс
Fив = — mв * r * w^2, т.е. сила инерции вращающихся масс
k = sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф)), т.е. коэффициент передачи сил от поршня к коленчатому валу

Вроде, так должно восприниматься проще=)

Итак, теперь препарируем каждое составляющее:

1. Коэффициент передачи сил от поршня к коленчатому валу:

k = sin (ф + arcsin (r/l * sinф)) / cos (arcsin (r/l * sinф))

По сути этот коэффициент можно определить так: это то значение силы, которое передастся коленчатому валу, если на поршень будет действовать постоянная единичная сила.

Посмотрим сравнение зависимости этого коэффициента от угла поворота коленчатого вала для моторов М30В34 и М30В25:

Ход (М30В25) = 71,6 мм,
Ход (М30В34) = 86 мм
Длина шатуна (М30В25) = Длина шатуна (М30В34) = 135 мм

Теперь посмотрим сравнение зависимости этого коэффициента от угла поворота коленчатого вала для моторов М30В34 и S38B36:

Ход (М30В34) = Ход (S38B36) = 86 мм
Длина шатуна (М30В34) = 135 мм
Длина шатуна (S38B36) = 144 мм

Что можно отметить? Если увеличение радиуса кривошипа хоть немного смещает по градусам раньше пик значения коэффициента и немного увеличивает само пиковое значение, то изменение длины шатуна практически не сказывается на изменении эпюры.

2. Сила инерции вращающихся масс.

Fив = — mв * r * w^2

Что можно сказать сразу из выражения?
Чем меньше масса вращающихся масс, тем меньше по модулю эта сила.
Чем меньше радиус кривошипа, тем меньше по модулю эта сила.
Чем меньше частота вращения коленчатого вала, тем меньше по модулю эта сила. Причем тут зависимость квадратичная.
Данная сила не зависит ни от длины шатуна, ни от угла поворота коленчатого вала.
Скучная, казалось бы, сила. Ни эпюр не построить, ни оценить изменения этой силы от каких-либо иных параметров. Да, так оно и есть. В готовом ДВС эта сила меняется только с частотой коленчатого вала, причем по обычной параболе.
Но давайте задумаемся над её смыслом. Как говорилось в статье про динамику, это паразитная сила. И нам бы её минимизировать. Ан не все так просто. К сожалению, уменьшить её не в ущерб силовой установке нельзя. Уменьшим массу коленчатого вала или шатуна — снизим прочность. Уменьшим радиус кривошипа — уменьшим крутящий момент. Уменьшим скорость вращения коленчатого вала — снизим мощность.

Дык, сколько же это в попугаях?

К сожалению или к счастью, я не распилил ни одного коленчатого вала и не взвешивал массы щек и шеек. Но давайте проведем оценку:
Коленчатый вал М30В34 имеет массу 29,5 кг. Пусть неуравновешена треть массы коленчатого вала, т.е. 10 кг. Делим на 6 цилиндров и получаем примерно 1,7 кг.
Шатун М30В34 имеет массу 0,75 кг. Пусть вращающаяся масса шатуна составляет треть, т.е. 0,5 кг.
Итого получаем:

Радиус кривошипа М30В34 составляет 86 см, т.е.

Fив (1000 об/мин) = — 2,2 кг * 0,086 м * (2*п рад/об * 1000 об/мин / 60 с/мин)^2 = — 0,1892 * (0,1 * 1000)^2 = — 1,8 кН.

А если же речь идет о 3000 об/мин:

Fив (3000 об/мин) = — 2,2 кг * 0,086 м * (2*п рад/об * 3000 об/мин / 60 с/мин)^2 = — 0,1892 * (0,1 * 3000)^2 = — 17 кН.

Если же 17 кило Ньютон Вас не впечатлили, то:

Fив (6000 об/мин) = — 2,2 кг * 0,086 м * (2*п рад/об * 6000 об/мин / 60 с/мин)^2 = — 0,1892 * (0,1 * 6000)^2 = — 68 кН.

Ну, аминь… Что еще тут можно сказать?

3. Сила инерции возвратно-поступательных масс.

Ну, эта сила в разы интереснее, не так ли? Налицо и зависимость от массы поршня и верхней части шатуна, и зависимость от радиуса кривошипа, и от оборотов двигателя, и от угла поворота коленчатого вала, и даже от длины шатуна. А это веский повод порисовать эпюрки=)

Но давайте вспомним, что означает данное выражение? Это произведение массы поршня и части массы шатуна на ускорение движения поршня (мы на них смотрели здесь), только со знаком минус. А это значит, что эпюра будет напоминать обратную эпюре ускорения с точности до массы.

Для наглядности представим массу единичной (т.е. 1 кг, что, кстати, близко у реальности) и посмотрим на графики:

М30В25 и М30В34 при 3000 об/мин:

Ход (М30В25) = 71,6 мм,
Ход (М30В34) = 86 мм
Длина шатуна (М30В25) = Длина шатуна (М30В34) = 135 мм

М30В25 и М30В34 при 6000 об/мин:

Ход (М30В25) = 71,6 мм,
Ход (М30В34) = 86 мм
Длина шатуна (М30В25) = Длина шатуна (М30В34) = 135 мм

М30В34 и S38B36 при 3000 об/мин:

Ход (М30В34) = Ход (S38B36) = 86 мм
Длина шатуна (М30В34) = 135 мм
Длина шатуна (S38B36) = 144 мм

М30В34 и S38B36 при 6000 об/мин:

Ход (М30В34) = Ход (S38B36) = 86 мм
Длина шатуна (М30В34) = 135 мм
Длина шатуна (S38B36) = 144 мм

Как мы видим, имеется серьезная зависимость от частоты вращения коленчатого вала. Имеется выраженная зависимость от радиуса кривошипа. От длины шатуна зависимость несущественная.
Ну, и нельзя не отметить, что и здесь речь идет о кило Ньютонах. Напомню, что обозначенная для рассмотрения возвратно-поступательная масса в 1 кг очень близка к истинной, ибо масса одного только поршня в среднем составляет 0,5…0,75 кг.

Прошу обратить внимание на интересную особенность этой силы: примерно до 70…80 градусов оборота коленчатого вала эта сила работает, казалось бы, во вред. На самом деле, это запасение энергии, которая после 70…80 градусов оборота коленчатого вала учавствует в выполнение полезной работы (на эпюре видно, что значение силы сменило знак с минуса на плюс и продолжает расти). Этот эффект подобен качелям: сначала вес качелей сопротивляется нам, но когда мы их отпускаем, качели начинают радовать=)

Когда направление поршня меняет направление движения (т.е. после 180 градусов), а значит и вектор силы тяги, данная сила снова паразитирует, сопротивляясь вращению. Но после 280…290 градусов опять же приносит пользу.

Что такое поршневая группа: общая теория и поршни СТК

20.09.2020 Поршневая группа СТКПоршневая группа СТК

Поршневая группа двигателя включает в себя: поршень, поршневые кольца и поршневой палец.

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.

Требования, которым должна соответствовать эта деталь:

  • температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С.
  • после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя.
  • зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
  • изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

Устройство поршня

Устройство поршня на примере СТК 21126Устройство поршня на примере СТК 21126

В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.

Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10». Поршень 2108 имеет диаметр 76 мм , модели 21083 и 2110 — 82 мм.

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.

Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.

«Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.

Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.

Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведёт к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.

Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор — 0,035-0,060 мм, для маслосъемного – 0,025-0,050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3 мм.

Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.

«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.

Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.

На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.

Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

Одним из факторов, определяющих геометрию поршня, является необходимость снижения сил трения.

Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.

На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.

В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции, основанных на новых научных разработках.

Когда речь заходит об отечественных машинах (ВАЗ, Приора и пр.) приходиться всерьёз рассматривать компанию СТК и её продукцию. Самара Трейдинг Компани (сокращённо – «СТК») не случайно стала одним из самых популярных производителей поршневых групп. Всё дело исключительно в производстве, ведь оно уникально в своём роде.

Самым сложным и, в то же время, важным технологическим процессом при изготовлении поршневых систем является литьё. Однородность и прочность материалов, жаростойкость и твёрдость – всё это играет важнейшую роль. Стоит какому-то коэффициенту отклонится на 1% и поршень застрянет в цилиндре, шатун может легко искривиться и даже заклинить, нарушив целостность и исправность всего силового агрегата.

Полуавтоматические устройства и специальные высокотехнологические станки позволяют компании СТК осуществлять литьё поршней на высочайшем уровне. Данной технологии нет равных, на протяжении долгих десятилетий и благодаря кропотливой работе инженеров фабрика создаёт самые качественные поршневые кольца и поршни. Несмотря на автоматизацию всех процессов, процедура изготовления каждого поршня контролируется людьми. Каждый продукт проходит целую линейку тестов.

Стоит лишь посетить любую станцию техобслуживания и задать вопрос автомеханику «Какой поршень идеально подойдёт отечественному автомобилю?», и вы услышите ответ: «СТК». Всё дело в том, что каждый механик желает выполнить работу так, чтобы клиент не возвращался к нему и не приходилось нарушать гарантийные обязательства.

Несмотря на лидирование компании СТК существуют и другие неплохие аналоги, например, Кострома-мотордеталь. В сравнении с китайскими и европейскими поршнями, Кострома хорошо показала себя в отечественных машинах, однако сама конструкция этого поршня не способна уберечь водителя от самой зловещей неисправности – столкновения поршня и клапанов.

Безвытковые Поршни СТК, содержащие специальные проточки, не влияют пагубно на клапана головки блока цилиндров. Поэтому в случае гидравлического удара, даже при срыве цепи газораспределительного механизма, когда поршни «летят» вверх, а клапана – вниз, исход их столкновения невозможен, если в двигатель установлены поршни СТК. Всё благодаря специальным канавкам, проточенным в головке каждого поршня – новшеству инженеров самарской компании.

Если ваш автомобиль уже давно б/у, его компрессия вас вовсе не радует и вы отлично понимаете, что настало время менять поршневую, помните: оптимальными для двигателя будут поршневые группы Самара Трейдинг Компани (СТК).

Шпг что это такое в машине

РЕМОНТ ШАТУННО-ПОРШНЕВОЙ ГРУППЫ (ШПГ) ДВИГАТЕЛЯ

Характеристика дефектов деталей ШПГ, способы их определения и устранения Поршни изготавливаются, как правило, из алюминиевых сплавов АЛ 4, АЛ 10В твердостью НВ 100—130. Их основными дефектами являются износ канавок под поршневые кольца, износ отверстий бобышек под поршневой палец, износ и задиры юбки поршня.

У поршня измеряют диаметры юбки, отверстия в бобышках и ширину канавок под поршневые кольца. Диаметры юбки поршня измеряют микрометром в плоскости качения шатуна и плоскости оси бобышек в двух сечениях.

Диаметры бобышек измеряют нутромером в вертикальной и горизонтальной плоскостях вблизи канавок для стопорных колец.

При износе канавок поршневых колец по ширине более 0,2 мм поршень выбраковывают. Износ отверстий в бобышках устраняется развертыванием отверстий под увеличенный палец. Поршневые пальцы изготавливаются из стали 20Х, 32ХНЗА с последующей цементацией или из сталей 40, 45 с последующей закалкой. Твердость поверхности НРС 56— 65. Основным дефектом пальцев является износ поверхностей сопряжения с втулкой верхней головки шатуна или бобышек поршня.

Диаметры поршневого пальца измеряют микрометром в двух взаимно перпендикулярных плоскостях в местах сопряжения его с бобышками и втулкой верхней головки шатуна.

Восстановление поршневых пальцев осуществляется гальваническим наращиванием (хромирование, железнение), пластическим деформированием (раздачей) с последующей термической и механической обработками.

Шатуны изготавливаются из сталей 45Г2, 40Х, 40, 45 с последующей закалкой и высокотемпературным отпуском до твердости НВ 207—289.

Основными дефектами шатунов является изгиб и скручивание стержня, износ поверхности отверстия верхней и нижней головок, поверхностей разъема нижней головки,’ поверхностей под головку и гайку шатунного болта.

Проверку диаметров головок производят индикаторным нутромером. Изгиб и скручивание шатуна проверяют при помощи приспособления КИ-724, предварительно собрав шатун с крышкой нижней головки (без вкладышей и втулки верхней головки).

Для шатунов двигателей всех марок изгиб не должен превышать 0,04 мм, а скручивание 0,06 мм на длине 100 мм (расстояние между контрольными штифтами). Шатуны правят методом обратного деформирования на специальных приспособлениях или под прессом. Для снятия остаточных напряжений шатуны после правки стабилизируют. При этом их нагревают в электрической печи до 400—450 °С, выдерживают при этой температуре 0,5—1,0 ч и затем медленно охлаждают на воздухе.

Износ поверхности нижней головки шатуна устраняют шлифованием плоскости разъема крышки с последующей расточкой нижней головки. При этом с крышки снимают слой металла толщиной 0,20—0,30 мм.

Верхнюю и нижнюю головки шатуна растачивают на станке УРБ-ВП-М. Овальность и конусность не должны превышать 0,02 мм.

После восстановления отверстия верхней головки шатуна производят запрессовку втулки с последующим растачиванием.

При расточке восстанавливают расстояние между осями верхней и нижней головок шатуна смещением центра расточки втулки. После расточки внутренняя поверхность, втулки раскатывается.

Втулки верхней головки шатуна изготавливаются из бронзы различных марок. Основными дефектами втулок является износ внутренней поверхности и ослабление посадки в верхней головке шатуна. Восстановление осуществляется пластическим деформированием (осадкой, раздачей) или гальваническим наращиванием (меднением). Восстановленную или новую втулку запрессовывают в верхнюю головку шатуна.

Запрессованные втулки предварительно растачивают с припуском на раскатывание 0,025—0,050 мм. Ролики и втулки при раскатке обильно смазывают дизельным топливом. Овальность и конусность не должны превышать-0,005 мм.

Комплектование деталей ШПГ двигателя

Детали ШПГ изготавливают по высокому классу точности. Сопряжения их имеют узкие пределы допустимых зазоров, что требует малого поля допуска на изготовление, что экономически нецелесообразно, поэтому детали ШПГ изготавливают с более широкими допусками и разбивают на три группы. Соединением деталей одной и той же группы (селективная сборка) добиваются заданных значений зазоров.

Кроме этого, детали ШПГ работают в условиях высоких скоростей и значительных знакопеременных нагрузок, поэтому несбалансированность движущихся деталей приводит к ускоренному аварийному износу и возможному отказу. Чтобы обеспечить динамическую сбалансированность кривошипно-шатунного механизма, поршни и шатуны одного комплекта подбирают по массе. Разница в массе шатунов различных двигателей обычно допускается в пределах 8—15 г, а разница в массе поршней не должна превышать 10 г.

Обозначение размерной группы и веса деталей приводится непосредственно на деталях (табл. 4.39). Вместо полной массы на деталях некоторых марок двигателей нанесены 2—3 цифры, обозначающие соответственно сотни, десятки, единицы граммов.

Подбор поршневых колец осуществляют по канавкам поршня и зазору в стыке. В зависимости от марки двигателя зазоры бывают величиной 0,03—0,25 мм. Верхнее компрессионное кольцо ставят с большим зазором. Величину зазора проверяют щупом. Правильно подобранное кольцо-должно свободно перемещаться в канавках и утопать под действием собственного веса. Зазор в замке проверяется-постановкой кольца в гильзу и последующим измерением.

Содержание и порядок выполнения работы

Ознакомиться с заданием и оснащением рабочего места. Проверить шатун на изгиб и скрученность на приборе КИ-724 (рис. 1) и произвести его правку в следующей последовательности:

Приспособление для проверки шатуна на изгиб и скрученность

Рнс. 1. Приспособление для проверки шатуна на изгиб и скрученность.

а —проверка шатуна на изгиб, б — установка индикаторов, в — установка разжимной оправки, г — проверка шатуна на скрученность; 1 — оправка; 2 — разжимная оправка; 3 — призма; 4, 7 — индикаторы. .5 — плита; 6 — упор; 8,10 — конусы; 9 — разжимная втулка оправки; 11 — гайка

— установить шатун на пресс и выпрессовать изношенную втулку из отверстия верхней головки шатуна;

— вставить вместо нее оправку с разжимной втулкой 9. Затем, закручивая гайку 11, конусами 8 и 10 закрепить оправку в отверстии шатуна; установить призму 3 с индикаторами 4 и 7 на оправку 1 таким образом, чтобы упор 6 призмы уперся в плиту 5. Не сдвигая призму с места, провернуть шкалу индикатора 4 АО совпадения нулевого деления с большой стрелкой индикатора. Провернуть призму на 180° и аналогично настроить индикатор 7;

— закрепить шатун на оправке 1 таким образом, чтобы призма 3, установленная на оправку 2, уперлась упором 6 в плиту 5. Отклонение большой стрелки индикатора 4 от нулевого положения покажет величину изгиба шатуна. Провернуть призму 3 на 180° и также по индикатору 7 определить величину скрученности шатуна. Скрученность шатунов тракторных двигателей допускается в пределах 0,05— 0,08 мм, а изгиб — 0,03—0,05 мм на 100 мм длины межосевого расстояния нижнего и верхнего отверстий шатуна;

— при наличии изгиба и скрученности шатун необходимо выправить с помощью приспособлений;

— для снятия остаточных напряжений после правки шатун нагреть в печи до 400—450 °С и выдержать при этой температуре в течение 30—60 мин. Затем оставить медленно остывать на воздухе;

— повторить проверку на изгиб и скрученность.

Запрессовать втулку в верхнюю головку шатуна и расточить ее под поршневой палец в следующей последовательности:

— при наличии изгиба и скрученности шатун выправить с помощью приспособлений и повторить проверку на изгиб и скрученность;

— допускается изгиб и скрученность шатунов соответственно 0,03 и 0,05 мм на 100 мм длины межосевого расстояния нижнего и верхнего отверстий шатуна. Желательно перед правкой нагреть его стержень до 450—600 °С;

— установить шатун на пресс и запрессовать новую втулку в отверстие верхней головки шатуна;

закрепить в отверстии нижней головки шатуна оправку 4 (рис. 1). Установить оправку вместе с шатуном на призмах 5 каретки. Уложить шаблон между упорами на подвижной каретке в кронштейне 5. Маховичком 6 переместить каретку до зажима шаблона между упорами каретки и кронштейном, застопорить каретку винтом 7. Надеть на шпиндель 2 центрирующий конус и маховиком ручного перемещения шпинделя совместить ось втулки шатуна с осью шпинделя. Опорой / и прижимной стойкой 3 закрепить верхнюю головку шатуна так, чтобы не нарушать

Крепление шатуна при расточке втулки верхней головки

Рис. 2. Крепление шатуна при расточке втулки верхней головки: 1 — опора; 2 —шпиндель; 3 — прижимная стойка; 4 — оправка; 5 — призмы каретки; 6 — маховичок передвижения кареток; 7 — винт стопорения каретки; в —кронштейн соосности осей. Вывести шпиндель и снять с него центрирующий конус;

произвести расчет и установить вылет резца. Он при растачивании втулки верхней головки шатуна на станке УРБ-ВП-М определяется по формуле:

Н = (d п + d ш + S – б )/2

Таблица 1. Зазоры в сопряжении втулка шатуна — поршневой палец в двигателях различных марок

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *