Из чего сделан радиатор
Перейти к содержимому

Из чего сделан радиатор

  • автор:

Системы охлаждения — от радиатора до жидкого азота! Часть 1

Еще из школьного курса физики нам известно, что любой проводник, по которому протекает электрический ток, выделяет тепло. Это приводит к тому, что все составляющие компьютера, по которым проходит ток (от процессора до соединительных проводов), нагревают окружающий их воздух.

image

Эту статью я писал почти год назад для одного конкурса… решил выложить, может кому будет интересно. Она ужасно огромная (без шуток — хабр не принял ее одним куском, так что будет две части / Часть 2 /). Трафик.

Скучная теория

Выделяемое количество теплоты зависит от содержимого Вашего системного блока, от его энергопотребления. Это вовсе не значит, что охлаждать нужно абсолютно все задействованные составляющие системника. Вешать вентиляторы на розетки вовсе не нужно, но вот современным процессорам и видеокартам без охлаждения ну никак не обойтись!

От тепловыделения, увы, никуда не деться, но ведь эта проблема имеет немало решений. Другой вопрос – чем охлаждать. На данный момент существует достаточно много систем охлаждения, все они используют общий принцип действия — перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). Мы рассмотрим только следующие системы:

— Радиатор;
— Радиатор+вентилятор = кулер;
— Система жидкостного охлаждения;
— Система охлаждения на элементах Пельтье;
— Система фазового перехода (фреонка);
— Система экстремального охлаждения на жидком азоте;

Можно использовать и наиболее эффективные установки, в которых совмещаются различные виды перечисленных систем, но это уже выходит за рамки данной статьи.

Мы же по-порядку начнем рассмотрение основных систем охлаждения и начнем с самого первого — радиатора.

Радиаторы

Радиатор (новолат. radiator, «излучатель») — теплообменник, служит для рассеивания тепла от охлаждаемого объекта. Механизмом передачи тепла здесь является теплопроводность, способность вещества проводить тепло внутри своего объёма. Все, что нужно — создать физический контакт радиатора с охлаждаемым объектом, именно поэтому он всегда находится в тесном контакте с тем, что охлаждает. После того, как радиатор принимает на себя часть тепла от охлаждаемого объекта, его задача – рассеять его в окружающий воздух.

Но мало просто обеспечить физический контакт! Ведь рано или поздно от постоянно нагревающегося охлаждаемого объекта нагреется и сама система охлаждения. А процесса теплообмена в системе тел с одинаковой температурой, как мы знаем, быть не может. Чтобы найти выход из данной ситуации и не столкнуться с проблемой перегрева, необходимо организовать подвод какого-то холодного вещества, чтобы охлаждать саму систему охлаждения. Такое вещество общепринято называть хладагентом (холодильный агент, частный случай теплоносителя)

image

Радиатор является воздушной системой охлаждения, т.е. хладагентом в его случае является холодный воздух из окружения. Тепло от охлаждаемого объекта идет к основанию радиатора, потом равномерно распределяется по всем его рёбрам, а уже после этого оно уходит в окружающий воздух. Такой процесс называется теплопроводностью. Воздух вокруг радиатора постепенно нагревается, из-за чего процесс теплообмена становится все менее эффективным. Эффективность теплообмена в можно увеличить, если постоянно подавать холодный воздух к рёбрам радиатора. Говоря проще, для эффективного охлаждения нужна свободная циркуляция холодного воздуха.

image

Такие физические величины, как теплопроводность (скорость распространения тепла по телу) и теплоемкость (количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус) у радиатора должны быть на высоком уровне. Из того же школьного курса нам известно, что наибольшей теплопроводностью обладают металлы. На самом деле это не так – наибольшая теплопроводность у алмаза :), и лежит она в диапазоне от 1000 до 2600 Вт/(м·K). Из металлов же лучше всех тепло проводит серебро – его теплопроводность равна 430 Вт/(м·K). После серебра идет медь [390 Вт/(м·K)], потом золото [320 Вт/(м·K)]. Завершает цепочку алюминий [236 Вт/(м·K)].

image

Откинув драгоценности, становится понятно, что наиболее применимыми являются два материала – алюминий и медь. Первый — из-за низкой стоимости и высокой теплоёмкости (930 против 385 у меди), второй — из-за большой теплопроводности (к недостаткам меди можно отнести более высокую температуру плавления и сложность ее обработки). Серебро же, за его высокую теплопроводность, иногда используют для изготовления основания радиатора. Еще для изготовления радиаторов может применяться сплав алюминия с кремнием – силумин. Преимущество его использования – дешевле алюминия.

image

Если радиатор сделан из высоко теплопроводного материала, то температура в любой его точке будет одинакова. Выделение тепла будет одинаково эффективно со всей площади поверхности. Т.к. объект отдаёт тепло со своей поверхности, то это значит, что для достижения наилучшего отвода тепла, площадь поверхности охлаждаемого объекта должна быть максимальной. Существует два способа увеличения площади радиатора — увеличение площади рёбер с сохранением размеров радиатора и увеличение геометрических размеров радиатора. Второй вариант, понятно, предпочтительней, но это вносит ряд неудобств – например, увеличивает вес и размеры радиатора, что может затруднить монтаж устройства. Ну и цена, соответственно, растет пропорционально количеству израсходованного на изготовления материала.

Типов конструкций ребер радиаторов существует огромное множество. Они могут быть толстыми, если были созданы процессом выдавливания. Или наоборот, тонкими – если ребра отливали. Они могут быть прямыми по всей длине радиатора, а могут быть расчерчены поперек. Могут быть плоскими, согнутыми из пластин, вдавленными в основание. Но лучше всего в работе на сегодняшний день себя показывают радиаторы игольчатого типа – в таких радиаторах вместо ребер квадратные или цилиндрические иглы.

image

Изготовление радиаторов

На данный момент мне известно 6 методов производства радиаторов:

1. Прессованные (экструзионные) радиаторы — самые дешевые и самые распространенные на рынке. Основным материалом, который используется в их производстве, является алюминий. Радиаторы такого типа изготавливаются путем прессования (экструзии), который позволяет получить достаточно сложные профили поверхностей ребер и достичь хороших теплоотводящих свойств.

2. Складчатые (ленточные) радиаторы — получаются тогда, когда тонка металлическая лента, свернутая в гармошку, пайкой (или с помощью адгезионных проводящих паст) прикрепляется на базовую пластину радиатора. Складки ленты-гармошки в данном случае играют роль ребер. Такая технология изготовления позволяет получать компактные изделия по сравнению с прессованными радиаторами, но с примерно такой же тепловой эффективностью.

3. Кованые (холоднодеформированные) радиаторы — радиаторы, получаемые в результате использования технологии холодного прессования. Эта технология позволяет создавать поверхность радиатора в виде стрежней произвольного сечения, а не только стандартных прямоугольных ребер. Как правило, они дороже радиаторов первых двух типов, но их эффективность зачастую гораздо ниже.

4. Составные радиаторы — близкие родственники «складчатых» радиаторов. Несмотря на это, их отличает существенный момент: в данном типе радиаторов поверхность ребер формируется не лентой-гармошкой, а тонкими раздельными пластинками, которые закрепляют пайкой или стыковой сваркой на подошве радиатора. Радиаторы этого типа немного более эффективны, чем экструзионные и складчатые.

5. Литые радиаторы – в производстве изделий такого типа используется технология литья в пресс-форму под давлением. Применение такой технологии позволяет получать профили реберной поверхности практически любой сложности, значительно улучшающий теплопередачу.

image

6. Точеные радиаторы — являются самыми дорогими и продвинутыми радиаторами. Изделия такого типа создаются прецизионной механической обработкой (на специальных высокоточных станках с ЧПУ) монолитных заготовок и отличаются самой высокой тепловой эффективностью. Если бы не производственная стоимость, то радиаторы такого типа давно смогли бы вытеснить своих конкурентов на рынке.

Тепловые трубки

В современных системах перестали быть редкостью применяемая в радиаторах и в кулерах – тепловые трубки или просто теплотрубки.

image

Она представляет собой герметическое теплопередающее устройство, которое работает по замкнутому испарительно-конденсационному циклу в тепловом контакте с внешними — источником и стоком тепла. Тепловая энергия берется на охлаждаемом объекте и затрачивается на испарение теплоносителя, который находится внутри корпуса тепловой трубки. Далее тепловая энергия переносится паром в виде скрытой теплоты испарения далее, на определенном расстоянии от места испарения, где при конденсации пара выделяется в сток. Образовавшийся конденсат снова возвращается в место испарения — либо под действием капиллярных сил (которые обеспечиваются наличием специализированной капиллярной структуры внутри тепловой трубки), либо за счет действия массовых сил (такая конструкция обычно именуется термосифоном).

Получается, что вместо привычного электронного механизма переноса тепла (путем теплопроводности, что имеет место в сплошном металлическом теплопроводе), в теплотрубке используется молекулярный механизм переноса (точнее, процесс переноса кинетической и колебательной энергии беспорядочного движения частиц пара).

image

image

Есть контакт! Какова площадь?

Нужно стремиться к тому, чтобы площадь контакта между радиатором и охлаждаемым объектом была как можно больше – ведь именно через эту площадь тепло от объекта будет поступать на радиатор. Но нужно учитывать то, что при соприкосновении двух даже самых гладких поверхностей, между ними все равно остаются мельчайшие полости и зазоры, заполненные воздухом [напомню, что теплопроводность воздуха 0.026 Вт/(м·K)] – это может сыграть свою злую шутку.

Чтобы избавиться от вредного воздуха и позволить радиатору работать с максимальной отдачей, применяют различные тепловые интерфейсы, чаще всего это термопроводная паста (термопаста). Она имеют большую теплопроводность [благодаря использованию в своем составе таких веществ, как алюминий и серебро (до 90% содержания)] и за счет текучести заполняет собой все неровности в соприкасающихся поверхностях.

Термопаста поставляются в комплекте с большинством брендовых кулеров и радиаторов. Бывает в виде шприца или небольшого тюбика-пакетика. Рекомендуется избегать попадания термопасты на электрические элементы компьютера.

image

Одним из параметров термопаст является продолжительность периода, когда она выходит на максимальную эффективность. В среднем это время составляет около недели. Компания Coolink недавно произвела первую термопасту с добавлением наночастиц – ее преимуществом является то, что никакого периода ожидания нет.

Помимо термопасты есть и другой вид теплового интерфейса – проводящие прокладки. Суть их работы та же, но используются они по другому – кладутся на поверхность контакта и при тепловом воздействии меняют свое агрегатное состояние, заполняя неровности и вытесняя воздух.

Итог по радиаторам


Несмотря на всевозможные вариации, самое главное преимущество радиатора то, что он не является источником какого-либо шума. К минусам можно отнести относительно низкую эффективность, отсутствие потенциала для разгона системы и зачастую крупные габариты.

Если доверять охлаждение современных видеокарт и процессоров пассивным радиаторам достаточно опасно, то охлаждение модулей памяти, жестких дисков, чипсета, цепей питания – можно и положиться.

Кулеры

Кулер (англ. cooler — охладитель) совокупность радиатора и вентилятора, устанавливаемого на электронные компоненты компьютера с повышенным тепловыделением. Самая главная задача устройства — снижение температуры охлаждаемого объекта и поддержание ее на определенном уровне. Достигается это за счет непрерывного потока воздуха, обдувающего радиатор. То есть менее эффективный процесс излучения превращается в более эффективный — конвекцию. Кулеры — это самый простой, самый быстрый, доступный и, в большинстве случаев, достаточный способ охлаждения компонентов компьютера — воздухом охлаждается все.

Вариантов исполнения существует гигантское множество. Если говорить про внешний вид можно долго, то касательно функциональных отличий много не расскажешь.

Кулеры бывают разных размеров – обычно от 40х40мм до 320х320мм.

image

Шарики за ролики

Самой важной частью любого кулера является его вентилятор. Именно он шумит у Вас в Вашем системном блоке. А если быть более точным, то шум этот появляется при столкновении воздушного потока с радиатором. Особенно этот шум ощутим на дешевых моделях кулеров, т.к. над их дизайном никто не работает.

Вентилятор состоит из крыльчатки (в ней по внутреннему диаметру расположен магнит) и электромотора, который этот магнит вместе с крыльчаткой вращает. Через центр вентилятора идет осевой штырь, который размещается в центре мотора. Для большей плавности хода крыльчатки могут использоваться три вида подшипников (срок службы которых производители указывают в тысячах часов на упаковке):

— Подшипник скольжения (sleeve bearing ) — наиболее дешевый и наименее надежный вариант, создающий при работе высокий уровень шума.
— 1 подшипник скольжения (sleeve bearing ) + 1 подшипник качения (ball bearing) — комбинированный подшипник- более долговечная конструкция, работающая в среднем в два раза дольше, чем на подшипнике скольжения.
— 2 или 4 подшипника качения (ball bearing) — наиболее надежные варианты с низким уровнем шума, но стоят такие вентиляторы существенно дороже первых двух.
— Игольчатые и NCB (наномиллиметровые керамические) подшипники — устанавливаются в вентиляторы ограниченным числом производителей. Они отличаются низким уровнем шума, невысокой стоимостью и очень большим сроком службы.

image

Кстати, о сроке службы (сроке безотказной работы. Если срок службы указан в 40-50 тысяч часов (почти 5 лет. Хотя бывает и больше — до 300 000 часов!), это вовсе не значит, что вспомнить о кулере в следующий раз придется только через это время. Нет! Это число нужно делить на два-три, и все равно время от времени производить профилактические действия – протирать от пыли, продувать, смазывать. Если не ухаживать за кулером, он может начать шуметь, а если совсем про него забыть – то и остановиться.

Производительность вентилятора (расходная характеристика) – пожалуй, основная его характеристика. Измеряется она в количестве кубических футов воздуха, перегоняемых им в минуту, сокращенно — CFM (Cubic Feet per Minute). Эта характеристика главным образом зависит от площади вентилятора, профиля лопастей и скорости их вращения. Чем больше это значение, тем выше эффективность охлаждения и, как правило, тем выше уровень шума, создаваемый вентилятором при работе.

Здоровое питание

Перегонять кубометры воздуха кулер может своими лопастями на скорости до 8000 оборотов в минуту (для сравнения, двигатель обычнго легкового автомобиля выдает 5-8 тысяч оборотов. Двигатель болида «Формула-1» — до 22 000 оборотов). Но понятное дело, что при такой скорости шум от работы кулера будет ощутимым. Поэтому предпочтительнее брать кулеры с термодатчиками – которые «анализируют» температуру и в зависимости от ситуации могут увеличивать или уменьшать количество оборотов. Чаще всего это положительно сказывается на шуме от работы.

Все компьютерные кулеры питаются от постоянного тока, напряжение которого чаще всего составляет 12В. Для подключения к питанию они используют Molex-коннекторы (для Smart-вентиляторов) или PC-Plug-коннекторы.

PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12В) и красный (+5В).

Разъёмы Molex на материнских платах используются для того, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В). По жёлтому (сигнальному) проводу система узнает от кулера сведения о скорости вращения его лопастей. Использование Molex имеет один весомый недостаток: опасно цеплять вентиляторы с потребляемой мощностью более 6Вт.

Дело обстоит иначе с разъемом PC-Plug – он выдерживает десятки Ватт. Но и без дегтя не обошлось — при подключении к нему Вы не сможете узнать, работает Ваш вентилятор или нет.
Найти переходник с одного разъема на другой сейчас не составляет никакого труда – они часто идут в комплекте.

Так же для снижения шума кулер иногда переводят на 5В или 7В. Шлейфы округляют, провода заплетают в косички или обтягивают оплеткой и убирают в укромное местечко – чтобы не мешали продуманной воздушной циркуляции.

image

О шумах

Все кулеры классифицируются по уровню шума, издаваемому от их работы на следующие классы (чем ниже уровень шума, тем более комфортной будет работа за компьютером):

Условно бесшумный. Уровень шума такой системы охлаждения составляет менее 24 дБ. Этот показатель ниже типового фонового шума в тихой комнате (в вечернее или ночное время суток). Таким образом, кулер не вносит практически никакого существенного вклада в шумовую картину. Обычно это значение достигается при минимальном числе оборотов вентилятора для систем с регулятором скорости вращения.

Малошумный. Уровень шума от такой системы охлаждения лежит в пределах от 24 до 30 дБ включительно. Кулер вносит еле ощущаемый вклад в акустику ПК.

Эргономичный. Уровень шума такой системы охлаждения лежит в диапазоне от 37 до 42 дБ включительно. Шум от такого кулера по всей вероятности будет заметен в большинстве пользовательских конфигураций компьютера.

Не эргономичный. Уровень шума рассматриваемой системы охлаждения больше 42 дБ. В таких условиях кулер будет являться основным «генератором» шума компьютера практически любой конфигурации. Домашнее применение такого кулера неоправданно – он больше подойдет для производственных и офисных помещений с фоновым шумом более 45 дБ.

Итог по кулерам


К плюсам кулеров относятся их распространенность, универсальность, доступность. Небольшую стоимость тоже можно отнести к плюсу, но стоит учитывать, что на хороший кулер жадничать не стоит – ведь это, по сути, второе сердце компьютера – нельзя, чтобы остановилось.

К минусам я отнесу возможные шумы, которые рано или поздно появятся на любом кулере.

Подводя итог вышесказанному. На данный момент кулер – самая распространенная система охлаждения, охладить которой можно что угодно – от процессора до винчестера и памяти. Вопрос заключается в выборе и подборе нужного кулера – ведь их существует великое множества от десятков производителей.

Кому-то нужна золотая середина между тишиной и производительностью. Кому-то нужны гигагерцы и плевать на шум, кто-то наоборот, предпочитает тишину.

Как делают радиаторы

Нидерланды — не та страна, которая ассоциируется у большинства с производством автомобильных компонентов. Вместе с тем, именно здесь, в городке Милль, работает одна из восьми фабрик компании, штаб-квартира и инженерный отдел NRF — одного из мировых лидеров в выпуске различных теплообменников для автомобилей, спецтехники, железнодорожных локомотивов, морских судов и индустриального сектора. Остальные заводы — в Испании, Франции и Индии. Все работают по единому стандарту качества и в совокупности производят свыше двух миллионов радиаторов в год.

Для тех, кому лень читать и кто хочет увидеть больше деталей, я приготовил 11-минутный видеоролик о том, как делают радиаторы:

Компания была основана в 1927 году в Амстердаме как мастерская по ремонту радиаторов, спустя несколько лет началось собственное производство. В 1954 году была открыта фабрика в Милле.

Найти ее за зарослями цветущих кустарников где-то посередине утыканной ветряными мельницами благополучной сельской глубинки оказалось непросто, но в итоге мне это удалось.

Посетителей встречает красивый металлический барельеф на кирпичной стене — и различные образцы выпускаемой продукции.

На предприятии два больших цеха. В одном производят алюминиевые радиаторы, в другом — медно-латунные.

Да-да, классическая технология пайки радиаторов из меди и латуни все еще востребована в специальной технике и сельском хозяйстве. Вдобавок, тут выпускают оригинальные радиаторы для снятых с производства европейских тракторов. Цех медно-латунных радиаторов — очень теплый и ламповый, но не только потому, что тут и там горят ацетиленовые горелки.

На стенах — старые инструменты, фотографии из семейного архива, сами заводчане в основном средних лет. В цеху царит семейная атмосфера. Она в целом есть на всей фабрике, но тут — особенно.

В еще одном цеху производят так называемые бокс-кулеры — радиаторы охлаждения для судовых двигателей. Их изобрели инженеры NRF в конце пятидесятых годов прошлого века. Они быстро стали стандартом для индустрии и с тех пор в технологии производства мало что изменилось. Голландская компания до сих пор мировой лидер в производстве бокс-кулеров — ими оснащают даже перспективные беспилотные контейнеровозы и танкеры.

Но давайте вернемся к теме поста — изготовлению автомобильных алюминиевых радиаторов.

Существует две принципиально разных технологии производства радиатора. Это механическая сборка и пайка. Сборные радиаторы чаще всего доступны только на вторичном рынке, в то время как с завода большинство автомобилей комплектуются паяными радиаторами.

В первом случае, радиатор изготавливается полностью механическим способом. Через отверстия в пакете из лент гофрированной алюминиевой фольги вручную вставляются трубки. Пакет слегка поджимается, на трубки устанавливают боковые пластины-коллекторы, после чего которые затем дорнуются для лучшей фиксации. На коллекторы устанавливаются полипропиленовые или полиамидные пластиковые бачки, усики пластины зажимаются на пластике. Вот и все, радиатор готов. Быстро, просто, дешево.

Низкая стоимость и есть главное преимущество механических радиаторов. Они могут быть в несколько раз дешевле паяного. При этом у них есть и целый ряд серьезных недостатков:

— Круглая форма трубок не обеспечивает нужной турбулизации потока охлаждающей жидкости.
— Эффективность теплоотдачи хромает. Трубки выделяют намного больше тепла, чем рёбра из-за отсутствия жесткой связи между трубками и ребрами. По удельной емкости такие радиаторы вдвое хуже паяных.
— Ребра легко заминаются.
— Радиатор способен выдержать меньшее давление.
— Рабочая температура двигателя, который охлаждается механически-собранным радиатором неизбежно увеличивается. Справятся ли с ней вентиляторы, большой вопрос. Появляется риск детонации, перегрева и так далее вплоть до выхода двигателя из строя — особенно в жару и при высокой нагрузке.

На фабрике NRF в Милле делают только паяные радиаторы. Они поставляются на конвейеры BMW, Porsche, DAF, Iveco, GINAF, Liebherr, Claas, Fendt, Damen, VDL и других автопроизводителей.

Трубчато-ленточный паяный радиатор состоит из четырёх компонентов: плоскоовальные трубки, ребра охлаждения, боковые коллекторы (доньи) и бачки.

Все эти детали изготавливаются из алюминия, но в случае с бачками возможна «пластиковая» опция. Вместо простых плоскоовальных трубок в промышленных теплообменниках могут применяться трубки с турбулизаторами — завихрителями потока охлаждающей жидкости, либо пластины с размещенными между ними турбулизаторами (здесь — гофрированная алюминиевая лента).

Плоскоовальные трубки и пластины поступают на фабрику уже в готовом виде, в шестиметровых коробках. Их поверхность заранее покрыта припоем, необходимым для пайки. Их нарезают на нужную длину под спецификацию конкретной модели теплообменника. Затем в случае с пластинами они покрываются флюсом на специальной машине — сначала с одной, а затем с другой стороны. Флюс необходим прежде всего для равномерного распределения ранее нанесенного припоя в момент пайки.

Изготовление гофрированной ленты рёбер охлаждения происходит на формовочных машинах, в которые подается из рулона алюминиевый лист нужной ширины толщиной 0.2 мм.

В результате формовки получается прочная конструкция, которая имеет высокие показатели жесткости как в продольном, так и в поперечном направлении. Гофрированная лента также нарезается на нужную длину.

Боковые коллекторы изготавливаются из алюминиевых пластин двумя основными способами, в зависимости от спецификаций изделия — лазерная резка и прессование, либо совокупность этих процессов.

Далее на специальном стенде, на котором оператор стоит на подъемной платформе, происходит сборка радиаторного пакета.

Слоеный пирог — гофрированная лента, трубка, снова лента, снова трубка… Стенд необходим для точной сборки, он же выполняет роль пресса для поджатия пакета.

Гидравлическая составляющая необходима прежде всего для сборки больших индустриальных радиаторов, но и маленькие собирают тут же. На этой линии, кстати, больше всего женщин. Услышав русский язык, одна из них заулыбалась — девушка с косой приехала работать на голландский завод из Литвы.

После сборки пакета радиатора, его переносят со стенда и устанавливают боковые коллекторы. Это происходит вручную, при помощи опрессовки и тяжелого резинового молотка, поэтому назвать специалиста оператором тут никак не получается: в этой вроде бы простой операции легко ошибиться и замять трубки, и радиатор будет испорчен.

После установки коллекторов, радиатор почти готов к пайке.

Почти — потому что если по конструкции предусмотрены металлические бачки, их устанавливают до пайки методом сварки.

Нам повезло, и мы наблюдали за процессом приваривания бачков на оригинальные масляные радиаторы для двигателя BMW S65B44 — 444-сильного атмосферного V8 от модели M3 в кузове E90/E92/E93. BMW размещает заказ на их производство раз в году, и в последние годы это не более 200 экземпляров. Рядом лежат похожие радиаторы для Porsche. На бачках — клеймо легендарной немецкой радиаторной марки Längerer & Reich. Субподряд! TIG-сварка происходит в среде инертного газа.

Пайка радиаторов происходит в печи. В зависимости от типа теплообменника, используются печи различных типов. Большие радиаторы по конвейеру направляют в огромную печь, где они запекаются вертикально в течение 2-3 часов при температуре от 600 до 700 градусов Цельсия.

Те, что поменьше, направляются на проходящую вдоль почти всего цеха линию, по которой радиатор перемещается подобно пицце на роликовых направляющих.

На первой установке конвейера печи происходит очистка радиатора, потом он попадает в специальную камеру, где на поверхность равномерно наносится флюс путем разбрызгивания. После этого радиатор подсушивается и выползает на участок контроля, где при необходимости оператор наносит дополнительное количество флюса. Далее в течение пары часов радиатор движется по печи. Происходит термохимическая реакция, флюс и припой расплавляются, и на выходе мы имеем практически готовый радиатор, в котором все его компоненты представляют собой единое целое.

Теперь можно установить пластиковые бачки, если это предусмотрено конструкцией. К сожалению, в день моего визита на фабрику никто не выполнял такой операции. Скажу только, что на NRF для производства бачков применяют только первичное сырьё — переработанный пластик не используется.

Затем радиатор необходимо проверить на герметичность. Этой проверке подвергаются все изделия без исключения. Радиатор вновь устанавливается на стенд и опускается в ванну с водой. В него подается воздух под давлением в полторы атмосферы, и оператор визуально следит за тем, чтобы нигде не струились пузырьки воздуха. Проверка занимает несколько минут. Если все хорошо, мастер берет металлический штамп и выбивает на радиаторе свое клеймо.

Масляные радиаторы рассчитаны на большее давление, поэтому их проверяют на автоматическом стенде. В них подается жидкость под давлением 16 атмосфер, и если все в порядке, станок сам ставит соответствующее клеймо.

При разговоре о тестировании стоит упомянуть и заводскую лабораторию, которая служит в основном для тестирования прототипов новых продуктов. Тестируют их по разному. Мне, например, показали тест новой модели радиатора для локомотива — давление в нём каждую секунду менялось от 0 до 2.5 атмосфер. В спецификации на изделие сказано про 148 000 таких циклов, а по протоколу испытания видно, что этот радиатор прошел без разрушения более трех миллионов циклов.

В соседнем помещении смонтирована своеобразная аэродинамическая труба — стенд для оценки теплотехнических параметров радиаторов. Вокруг него —переплетение труб и проводов. Радиатор устанавливается на напорную камеру, в хвосте установки размещается мощный вентилятор.

Перед радиатором размещаются датчики температуры, которые позволяют отслеживать изменение температуры воздуха. Программа испытаний управляется компьютером, что также позволяет максимально точно оценивать эффективность работы радиатора при различных условиях.

После проверки на герметичность, радиатор подсушивается и направляется на участок упаковки.

Упаковка тут происходит практически полностью вручную, без суеты и спешки, с использованием большого количества картона. К радиаторам с логотипом EasyFit прилагают и необходимый набор крепежей и прокладок для упрощения установки.На сегодняшний день установочными наборами комплектуется примерно 2000 наименований производимой продукции.

Поскольку у марки 8 заводов по всему миру, в 18 странах включая Голландию есть собственные дистрибьюторские центры. Один из них в получасе езды от завода. Здесь на площади без малого 9000 квадратных метров оборудовано свыше 13 000 мест для палетт. Единовременно на складе хранится до 400 000 коробок с продукцией. В этом центре обрабатывают заказы для западноевропейских стран. Продукция для России отгружается с похожего склада в Польше.

Вот так делают автомобильные радиаторы на заводе в Голландии. Буду рад вашим комментариям и дополнениям!

Из какого металла сделан радиатор автомобиля

Радиатор является одним из ключевых и наиболее важных элементов жидкостной системы охлаждения. Основной задачей становится рассеивание в атмосферу тепла, которое было отведено от двигателя охлаждающей жидкостью. Радиатор системы охлаждения двигателя можно считать важнейшей деталью самого силового агрегата.

Рекомендуем также прочитать статью, в которой рассмотрено устройство топливной системы двигателя внутреннего сгорания. Из этой статьи Вы сможете узнать об основных элементах, смесеобразовании и принципах работы системы.

Устройства, похожие на современный радиатор, устанавливались на самых ранних версиях автомобилей с ДВС, так как без указанного элемента охлаждения работа силовой установки становится попросту невозможной. Это устройство напрямую отвечает за поддержание нормальной рабочей температуры двигателя в строго отведенных рамках. Такая защита бережет мотор от перегрева, который неминуемо выведет практически любой двигатель внутреннего сгорания из строя.

История создания радиатора

Водяная система охлаждения появилась на заре двигателестроения. Впервые концепцию радиатора применили на первом серийном автомобиле под названием Benz Velo, который оказался в свободной продаже в 1886 году. Данную идею устройства продолжил развивать Вильгельм Майбах, который сконструировал изделие с сотами. Разработка нашла применение в конструкции модели Mercedes 35HP. За последующие десятилетия и до наших дней устройство радиатора не претерпело глобальных изменений, оставшись практически в том же самом виде, что и во времена Майбаха.

Первые жидкостные системы охлаждения двигателя не имели водяного насоса (помпы), который заставлял охлаждающую жидкость (в самом начале это была простая вода) принудительно циркулировать в системе. Ранние разработки системы охлаждения ДВС опирались на эффект термосифона.

Благодаря такому эффекту охлаждающая жидкость попадала в радиатор. Эффект термосифона основывается на том, что плотность воды понижается при нагреве. Разогретая вода благодаря этому свойству устремляется вверх. В итоге нагретая жидкость оказывалась в устройстве, проникая туда посредством прохода через верхний патрубок.

Внутри радиатора происходило охлаждение воды, плотность жидкости снова возрастала. Это приводило к тому, что вода опускалась в нижнюю часть радиатора, а уже оттуда проникала обратно в рубашку двигателя через нижний патрубок. Главным недостатком систем с эффектом термосифона стало то, что они не могли обеспечить должного охлаждения на фоне постоянно растущей мощности ДВС. Такие системы достаточно быстро вытеснили решения, которые основывались на применении центробежного водяного насоса (помпы).

Ремонт или замена

Практикой доказано, что отремонтировать радиатор дорогой машины будет стоить в два раза дешевле покупки и монтажа аналогичного нового изделия. Но это именно для премиальных моделей. Обычно починка неисправного радиатора длится не более двух-трёх дней.

Но не всякий радиатор можно отремонтировать. Существует по крайней мере одно обстоятельство, при котором восстанавливать эту деталь не имеет смысла: трубки радиатора обильно загрязнены агрессивными химическими веществами. Здесь и чистка бесполезна.

Итак, насколько практичной будет замена радиатора? Владельцам новых машин премиум-класса с таким вопросом стоит обратиться к специалисту, а также узнать у него подробности о ремонте и попросить его провести диагностику данного элемента системы охлаждения.

Если же машина недорогая, то лучше купить новый радиатор, это выйдет относительно ненакладно. Замена этого агрегата имеет смысл и при нестандартных неисправностях, чтобы потом при поездках меньше переживать.

Радиатор в системе жидкостного охлаждения

Главной задачей элемента является отвод тепла от силовой установки в атмосферу путем охлаждения жидкости, которая проходит внутри по каналам. Для обеспечения лучшего отвода тепла устройство монтируется в таком месте, где отмечен наилучший обдув встречным воздушным потоком в процессе движения автомобиля. Типичным местом установки в подкапотном пространстве является область за радиаторной решеткой спереди автомобиля. Стоит отметить, что даже в автомобилях с задним расположением ДВС радиатор зачастую устанавливается спереди. Отличием становится прокладывание более длинных магистралей системы охлаждения к двигателю.

Существуют и другие места для монтажа устройства охлаждения, но встречаются реже. Автомобили с заднемоторной компоновкой могут иметь радиатор, который установлен вдоль боковой стенки. Такое решение можно встретить на спортивных автомобилях, которые имеют сразу два радиатора охлаждения, расположенные вдоль обеих стенок моторного отсека. Эффективный обдув воздухом реализован путем использования воздухозаборников. Указанный воздухозаборник располагают в задней части машины на боковых стенках.

Устройство радиатора

а – устройство; б – паровой клапан открыт; в – воздушный клапан открыт.

  • Радиатор конструктивно имеет верхний (1) и нижний (7) бачок. Эти бачки соединены между собой трубками (5) из латуни или алюминия. К этим трубкам посредством пайки прикреплены пластины (6), которые увеличивают площадь поверхностного охлаждения элемента. Через эту поверхность тепло отводится от охлаждающей жидкости и отдается в окружающую среду.
  • Верхний бачок имеет заливную горловину для заправки охлаждающей жидкостью. Горловина перекрывается пробкой (3). В этой пробке имеются паровой (11) и воздушный (12) клапаны.
  • Верхний бачок также имеет патрубок (2) для того, чтобы соединить радиатор с рубашкой охлаждения мотора. Такое соединение реализовано посредством резинового шланга. Дополнительно имеется пароотводная трубка (4), а также датчик электрического термометра (13).
  • Нижний бачок (7) имеет патрубок (8) для соединения устройства с насосом (помпой). Еще имеется дополнительный кран, который способен обеспечить слив охлаждающей жидкости. На раме автомобиля радиатор крепится специальными крепежными деталями (9).

Так называемые сердцевины (пластины радиатора) являются основными элементами теплообмена. В зависимости от типа сердцевины выделяют следующие типы радиаторов:

  1. трубчатые;
  2. пластинчатые;
  3. трубчато-ленточные и т.д.

Бачки радиатора могут быть изготовлены из пластика или металла. Если взглянуть на устройство более детально, тогда основная часть сердцевины, по сути, является набором бесшовных алюминиевых или латунных трубок. Трубки, соединяющие верхний и нижний патрубки, имеют толщину стенок до 0,15 миллиметра. Жидкость, проходящая через сердцевину радиатора охлаждения, расходится на большое количество микропотоков. Каждая такая трубка покрывается своеобразными ребрами, которые являются тонкой гофрированной медной или алюминиевой лентой.

Изделия из алюминия имеют меньший вес сравнительно с другими материалами изготовления, но склонны к ускоренному разрушению. Дело в том, что возникает ряд существенных сложностей при попытке сварки этого металла, а также алюминий плохо противостоит механическим повреждениям.

Для того чтобы алюминиевый продукт приблизился по качеству охлаждения к латунной конструкции, его необходимо изготавливать большим по размеру и увеличивать толщину элемента. В начале эпохи автомобилестроения активно использовались сотовые радиаторы. Такое устройство было выполнено из небольших отрезков латунных трубок, которые имели пятиугольное сечение. Жидкость внутри таких трубок не циркулировала принудительно, а весь процесс охлаждения осуществлялся посредством контакта металлических ребер со встречным потоком воздуха.

Вернемся к устройству современного радиатора. Паровой клапан, изображенный на рисунке, нагружается специальной пружиной (10). Пружина имеет упругость 1250—2000 г. Это позволяет нарастить давление в радиаторе охлаждения и повысить температуру закипания охлаждающей жидкости в жидкостной охлаждающей системе до отметки 110-119°С. Такое решение обеспечивает уменьшение объема охлаждающей жидкости во всей системе, что означает параллельное снижение массы двигателя. При этом сохраняется необходимая интенсивность охлаждения силового агрегата. Еще одним плюсом становится уменьшение потерь, под которыми следует понимать испарение охлаждающей жидкости.

Воздушный клапан также нагружают пружиной, но более слабой по силе противодействия. Упругость такой пружины находится на отметке 50-100 г. Задачей воздушного клапана является пропуск воздуха внутрь устройства в том случае, если произошла конденсация охлаждающей жидкости после того, как она закипела и была охлаждена.

Другими словами, внутри системы за счет явления парообразования может возникнуть избыточное давление. Точка кипения охлаждающей жидкости соответственно ему повышается, при этом нет зависимости от атмосферного давления, так как давление сброса задается клапаном в крышке. Такое свойство системы охлаждения незаменимо в процессе езды по горной местности. По причине пониженного атмосферного давления в горах охлаждающая жидкость закипает быстрее, чем в обычных условиях. Данное решение установки воздушного клапана позволяет таким образом предотвратить разрушение радиатора. который может быть попросту раздавлен атмосферным давлением.

Пробка, оснащенная клапанами, обеспечивает открытие выпускного клапана в случае закипания охлаждающей жидкости внутри системы и возникновения избыточного давления, которое приблизительно находится на отметке 0,5 кг/см2. Пар выводится в пароотводную трубку. Впускной клапан обеспечивает доступ воздуха тогда, когда давление внутри оказывается ниже атмосферного давления (ниже 1 кг/см2), что возникает в устройстве при остывании охлаждающей жидкости.

Таким образом, устройство пробки полностью изолирует систему охлаждения от внешней атмосферы. По этой причине описанную систему называют системой охлаждения закрытого типа.

В закрытой системе охлаждения для слива охлаждающей жидкости нужно открыть сливные краны и извлечь пробку радиатора. Чтобы спустить жидкость из водяной рубашки двигателя, в нижней части блока отдельно предусмотрен соответствующий кран для слива. Существует также система охлаждения открытого типа. В открытой системе горловина устройства охлаждения закрыта пробкой без клапанов. В такой системе вода закономерно кипит при температуре 100°С.

Конструктивные особенности

Устройство радиатора охлаждения двигателя

мало чем отличается от конструкции любого другого устройства с аналогичными функциями. Изготавливаются радиаторы преимущественно из меди и алюминия, как материалов прочных, удобных в ремонте и имеющих хорошие параметры теплоотдачи. Современный радиатор двигателя может быть:

  • трубчатым;
  • пластинчатым;
  • иметь форму сот.

Между пластинами, сотами или трубами располагаются поперечные латунные полоски, делающие изделие более жестким, а также увеличивают площадь обдува, что повышает качество охлаждения. Постоянное круговое движение жидкого теплоносителя в системе обеспечивается специальным устройством – помпой. Все части системы соединяются между собой термостойкими патрубками, чаще всего прорезиненными.

В качестве теплоносителя, циркулирующего в радиаторе, чаще всего применяются всем известные составы, такие как антифриз или тосол, хотя многие автолюбители в теплое время заливают туда и простую дистиллированную воду. Жидкость заливается в специальный расширительный бачок, предназначаемый не только для повышения удобства наполнения, но и для обеспечения возможности расширения жидкости в системе, ведь ее объем варьируется в зависимости от температуры и давления.

Автомобильный радиатор – «хладнокровный» напарник мотора

Устройство радиатора охлаждения двигателя

Принудительное охлаждение радиатора осуществляется с помощью вентилятора. В современных автомобилях реализуется одна из двух концепций вентиляторов:

  • приводимые в движение коленвалом;
  • приводимые в движение отдельным электромотором.

Если первые работают постоянно, то вторые включаются автоматически только тогда, когда температура жидкости в системе охлаждения достигает критического значения. Например, такое случается при продолжительной стоянке заведенного автомобиля, когда естественный обдув радиатора встречным воздухом отсутствует.

Это интересно: Стабилизаторы поперечной устойчивости – чтобы легко преодолевать повороты!

Регулировка температуры охлаждающей жидкости

За поддержание постоянной температуры в системе охлаждения двигателя отвечает термостат. Данный элемент распределяет движение охлаждающей жидкости по контурам. Эти контуры называются малый и большой круг. Рубашку двигателя можно считать малым кругом, движение потока через радиатор-большой круг. Возникает такая ситуация, когда охлаждения наружным воздухом при движении ОЖ по большому кругу в жаркую погоду или при нагрузках оказывается недостаточно. Чтобы обеспечить эффективный отвод нагретого воздуха и поддерживать постоянную температуру охлаждающей жидкости дополнительно устанавливается один или целый ряд вентиляторов. Такие вентиляторы могут иметь механический привод (вискомуфту) или электрический привод.

Регулирование теплового режима «шторкой»

Жидкостная система охлаждения двигателя внутреннего сгорания может быть оснащена двойным регулированием теплового режима. Первым регулятором выступает термостат, о котором мы уже говорили. Вторым терморегулирующим элементом становится шторка-жалюзи.

Устройства с двойным регулированием конструктивно имеют жалюзи, установленные непосредственно перед радиатором. Благодаря такому решению в сильные морозы радиатор можно прикрыть, уменьшив интенсивность обдува наружным воздухом. Отвод тепла снизится, а само тепло можно более эффективно использовать для поддержания рабочей температуры ДВС и интенсивного отопления салона автомобиля.

Жалюзи представляют собой пластины из металла, которые соединены между собой шарнирами. Эти шторки могут иметь вертикальное или горизонтальное расположение перед устройством. Управление таким решением осуществляется рукояткой из салона автомобиля, а также может быть реализовано автоматически в отдельных конструкциях. Принцип действия механического устройства заключается в том, что задвигая или вытягивая рукоять в салоне, водитель осуществляет поворот пластин. Происходит изменение щели между жалюзи и происходит регулировка интенсивности обдува радиатора воздушными потоками. Результатом становится воздействие на температуру охлаждающей жидкости.

В условиях предельно низких температур на капот и радиаторную решетку дополнительно крепят специальный утеплительный чехол. Такой чехол изготовлен из водонепроницаемой пожаробезопасной ткани. Указанные меры способствуют поддержанию рабочего теплового режима двигателя в необходимых рамках.

Установка дополнительного радиатора

Появление мощных высокофорсированных атмосферных и турбодвигателей, которые работают в самых разных режимах нагрузки, поставило перед разработчиками задачу установить дополнительные устройства охлаждения. Инженеры реализовали параллельную установку дополнительного радиатора. Такое решение получило свой отдельный электрический вентилятор. Не стоит путать дополнительный радиатор охлаждения с интеркулером, который устанавливается для охлаждения сжатого воздуха в системах с турбонагнетателем.

Возможные неисправности

Устройство радиатора достаточно просто, поэтому существует не так много его возможных неисправностей.

  • Засорение трубок или сердцевины. В этом случае требуется промывка системы.
  • Внешнее загрязнение сот.
  • Нарушение герметичности системы охлаждения. Здесь без ремонта или замены детали не обойтись.

Любой радиатор автомобиля представляет собой замкнутую систему, имеющую описанный выше принцип работы. Поэтому для различных видов детали способы устранения неисправностей будут одинаковы.

Принцип работы

Для правильного функционирования современные жидкостные системы охлаждения в процессе работы учитывают множество важнейших параметров. Специальные датчики снимают показания температуры двигателя, температуры охлаждающей жидкости и моторного масла, температуры за бортом и т.д.

Если вкратце описывать принцип работы системы охлаждения, тогда за точку отсчета стоит принять жидкостной насос. Этот элемент заставляет охлаждающую жидкость постоянно двигаться и циркулировать по кругу. При этом проход через рубашку охлаждения двигателя (малый круг) позволяет жидкости омывать горячие стенки головки блока и цилиндров. Когда температура охлаждающей жидкости растет, тогда при определенных показателях срабатывает термостат и открывает доступ жидкости в большой круг (радиатор). Так удается избежать перегрева двигателя и эффективно отдать жидкости избыточное тепло от нагретых деталей мотора. Когда горячая жидкость попадает в устройство охлаждения, от неё происходит отвод тепла в окружающую атмосферу. Полный цикл заканчивается, а охлажденная жидкость движется аналогично по новому циклу.

Вполне очевидно, что радиатор является своеобразным теплообменником, который обеспечивает эффективное охлаждение не самого мотора, а охлаждающей жидкости. Установка дополнительного вентилятора или жалюзи позволяет поддерживать температуру жидкости на оптимальном для работы мотора уровне как в экстремальный холод, так и в сильную жару.

Когда нужно производить замену?

Автомобильный радиатор не является компонентом, который необходимо постоянно менять. Это долговечный элемент, который вряд ли вызывает проблемы. Тем не менее, следует знать об уровне воды и ее цвете. Если уровень низкий, возможно, произошла утечка. В этом случае замена рекомендуется.

Очень темная жидкость с признаками ржавчины также не является хорошим признаком. Обратите внимание на рабочую температуру двигателя, и если она начинает слишком сильно подниматься, обратитесь к специалисту. Рекомендуется производить замену жидкости через каждые 30 000 км или 12 месяцев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *