Какое расположение осей валов допускают зубчатые передачи
Перейти к содержимому

Какое расположение осей валов допускают зубчатые передачи

  • автор:

Лекция № 4. Общие сведения о зубчатых передачах (ЗП)

Зубчатая передача — трехзвенный механизм, включающий два подвижных звена, взаимодействующих между собой через высшую зубчатую кинематическую пару и образующих с третьим неподвижным звеном низшие (вращательные или поступательные) кинематические пары (рис. 4.1).

Рис. 4.1. Виды зубчатых передач.

Меньшее зубчатое колесо, участвующее в зацеплении обычно называют шестерней, большее – зубчатым колесом, звено зубчатой передачи, соверша­ющее прямолинейное движение, называют зубчатой рейкой (рис. 4.1, к).

Назначение зубчатой передачи — передача движения (чаще всего вращательного) с преобразованием параметров, а иногда и его вида (реечная передача). Зубчатые передачи вра­щательного движения наиболее распространены в технике (рис. 4.1, а…и). Они характеризуются передаваемыми мощностями от микроватт (механизм кварцевых наручных часов) до десятков тысяч киловатт (крупные шаровые мельницы, дробилки, обжиговые печи) при окружных скоростях до 150 м/с.

Классификация зубчатых передач:

1. По величине передаточного числа:

1.1. с передаточным числом u ³ 1редуцирующие (редукторы — большинство зубчатых передач);

1.2. с передаточным числом u < 1мультиплицирующие (мультипликаторы).

2. По взаимному расположению валов:

2.1. с параллельными валами — цилиндрические зубчатые передачи (рис. 4.1, а…г);

2.2. с пересекающимися осями валов — конические зубчатые передачи

(конические передачи с углом 90° между осями валов называют ортогональными; рис. 4.1, д…ж);

2.3. с перекрещивающимися осями валов — червячные, винтовые (рис. 4.1, и), гипоидные (рис. 4.1, з);

2.4. с преобразованием движения – реечные (рис. 4.1, к).

3. По расположению зубьев относительно образующей поверхности колеса:

3.1. прямозубые — продольная ось зуба параллельна образующей поверх­ности колеса (рис. 4.1, а, г, д, к);

3.2. косозубые — продольная ось зуба направлена под углом к образующей поверхности колеса (рис. 4.1, б, е, и);

3.3. шевронные — зуб выполнен в форме двух косозубых колес со встреч­ным наклоном осей зубьев (рис. 4.1, в);

3.4. с круговым зубом — ось зуба выполнена по окружности относительно образующей поверхности колеса (рис. 4.1, ж, з).

4. По форме зацепляющихся звеньев:

4.1. с внешним зацеплением зубья направлены своими вершинами от оси вращения колеса (рис. 4.1, а…в);

4.2. с внутренним зацеплением — зубья одного из зацепляющихся колес направлены своими вершинами к оси вращения колеса (рис. 4.1, г);

4.3. реечное зацепление — одно из колес заменено прямолинейной зуб­чатой рейкой (рис. 4.1, к);

4.4. с некруглыми колесами.

5. По форме рабочего профиля зуба:

5.1. эвольвентные — рабочий профиль зуба очерчен по эвольвенте круга (линия описываемая точкой прямой, катящейся без скольжения по окружности);

5.2. циклоидальные — рабочий профиль зуба очерчен по круговой циклоиде (линия описываемая точкой окружности, катящейся без скольжения по другой окружности);

5.3. цевочное (разновидность циклоидального) – зубья одного из колес, входящих в зацепление, заменены цилиндрическими пальцами – цевками;

5.4. с круговым профилем зуба (зацепление Новикова) – рабочие профили зубьев образованы дугами окружности практически одинаковых радиусов.

6. По относительной подвижности геометрических осей зубчатых колес:

6.1. с неподвижными осями колес — рядовые передачи (рис. 4.1);

6.2. с подвижными осями некоторых колес — планетарные передачи.

7. По жесткости зубчатого венца колес, входящих в зацепление:

7.1. с колесами неизменяемой формы (с жестким венцом);

7.2. включающая колеса с венцом изменяющейся формы (гибким).

8. По окружной (тангенциальной) скорости зубьев:

8.2. среднескоростные (3< Vз < 15 м/с);

8.3. быстроходные (Vз > 15 м/с).

9. По конструктивному исполнению:

9.1. открытые (бескорпусные);

9.2. закрытые (корпусные).

Наиболее широкое применение находят редуцирующие зубчатые передачи вращательного движения, в том числе и в многоцелевых гусеничных и колесных машинах (коробки передач, бортовые редукторы, приводы различных устройств). Поэтому дальнейшее изложение, если это не упоминается особо, касается только передач вращательного движения.

Достоинства зубчатых передач: 1. Высокая надежность работы в широком диапазоне нагрузок и скоростей. 2. Большой ресурс. 3. Малые габариты. 4 Высокий КПД. 5. Относительно малые нагрузки на валы и подшипники. 5. Постоянство предаточного числа. 6. Простота обслуживания.

Недостатки зубчатых передач: 1. Сложность изготовления и ремонта (необходимо высокоточное специализированное оборудование). 2. Относительно высокий уровень шума, особенно на больших скоростях. 3. Нерациональное использование зубьев – в работе передачи одновременно участвуют обычно не более двух зубьев каждого из зацепляющихся колёс.

Конструктивные (геометрические) параметры зубчатых передач (на примере цилиндрических зубчатых передач):

Межосевое расстояние aw – расстояние между геометрическими осями валов, на которых закреплены шестерня и зубчатое колесо.

Диаметры начальных цилиндров (окружностей) зубчатых колес dw1 и dw2 [1] , участвующих в зацеплении – диаметры мнимых цилиндров (в сечении, перпендикулярном осям вращения взаимодействующих зубчатых колес, окружностей), которые в процессе работы передачи обкатываются один по другому без проскальзывания. При изменении межосевого расстояния передачи меняются и диаметры начальных цилиндров (окружностей). У отдельно взятого колеса диаметра начального цилиндра (окружности) не существует.

Названные параметры передачи связаны между собой простым соотношением

, (4.1)

где знак «+» относится к внешнему зацеплению (рис. 4.1, а…в, и), а знак «-» — к внутреннему (рис. 4.1, г).

Числа зубьев зубчатых колес z1 и z2. Суммарное число зубьев колес, участвующих в передаче

. (4.2)

Делительные диаметры d1 и d2 зубчатых колес, участвующих в зацеплении – диаметры цилиндров (окружностей) по которым обкатывается без скольжения инструмент при нарезании зубьев колеса методом обкатки. У большинства зубчатых передач (при отсутствии ошибок в изготовлении) делительные диаметры и диаметры начальных цилиндров совпадают, то есть dw1 = d1 и dw2 = d2. Поскольку делительные диаметры связаны с процессом изготовления зубчатого колеса, а каждое зубчатое колесо изготавливается отдельно, следовательно делительный диаметр (делительный цилиндр, в поперечном сечении – делительная окружность)имеется у каждого отдельно взятого колеса.

Часть делительного диаметра, приходящаяся на один зуб колеса называется модулем m, следовательно для любого нормального зубчатого колеса

. (4.3)

Модуль является основной размерной характеристикой зубьев колеса. С целью обеспечения взаимозаменяемости зубчатых колес, унификации и сокращения номенклатуры режущего инструмента для их изготовления модуль стандартизован, то есть при проектировании передачи выбирается из ряда стандартных значений.

Расстояние между одноименными боковыми поверхностями двух соседних зубьев, измеренное по дуге делительной окружности называют окружным делительным шагом зубьев p. Так как длина делительной окружности равна p´d, то, учитывая (4.3), для любого зубчатого колеса имеем

. (4.4)

Из сказанного следует, в зацеплении могут находиться только зубчатые колеса с одинаковым модулем.

Кинематические параметры зубчатых передач: угловые скорости w1, w2 и частоты вращения n1, n2 ведущего и ведомого зубчатых колес, а также связанное с ними передаточное число зубчатой передачи, вычисляемое по соотношению

. (4.5)

Учитывая вышеизложенное, нетрудно установить, что

. (4.6)

Для нормальной работы зубчатой передачи (обеспечение плавности работы, отсутствие излишних вибраций и инерционных сил, относительно высокий КПД зубчатого зацепления) форма рабочей поверхности профиля зубьев должна удовлетворять следующим требованиям:

1. в течение времени взаимодействия рабочих поверхностей двух сопряженных зубьев ведущего и ведомого колес передаточное отношение должно сохраняться постоянным (основная теорема зубчатого зацепления);

2. профиль зуба должен обеспечивать выполнение условия 1 при зацеплении данного колеса с любым другим колесом того же модуля;

3. профиль зуба должен обеспечивать возможность изготовления колеса любого диаметра одним инструментом;

4. инструмент для нарезания зубьев должен быть простым и легко доступным для изготовления и контроля.

Передачи с эвольвентным зацеплением.

Наиболее полно перечисленным требованиям удовлетворяет эвольвентное зацепление, предложенное Леонардом Эйлером (в 1760или 65 г.), которое и получило самое широкое распространение в общепромышленной и военной технике. [2]

Основные параметры эвольвентных цилиндрических зубчатых передач стандартизованы, при обозначении параметрам шестерни приписывается индекс «1«, параметрам колеса — «2» (рис. 4.2):

Рис. 4.2. Схема эвольвентного зацепления.

1. Межосевая линия О1О2 прямая линия, пересе­кающая оси зубчатых колес передачи под прямым углом.

2. Межосевое расстояние (аw) — расстояние между осями зубчатых колес О1 и О2, измеренное по меж­осевой линии.

3. Линия зацепления (NN) — геометрическое место точек контакта между сопряженными профилями зубьев. Линия зацепления одновременно является нормалью к профилю боковой (рабочей) поверхности зуба, и потому усилие нормального давления между зубьями всегда направлено по линии зацепления.

4. Угол зацепления (aw) — угол между линией зацепления и перпен­дикуляром к межосевой линии. (стандартный угол зацепления aw = 20°; уменьшенный угол зацепления aw = 15°; увеличенный — aw =22,5°).

5. Основная окружность (основной цилиндр; его диаметры обозначаются db1 и db2, радиусы – rb1 иrb2) — окружность, по которой обкатывается без скольжения прямая, точки которой описывают эвольвенту, очерчивающую боковую поверхность зуба, следовательно это окружность с центром на оси вращения колеса, касающаяся линии зацепления.

6. Начальные окружности (начальный цилиндр; его диаметры обозначаются dw1, dw2) — окружностисопряженных зубчатых колес, которые при их вращении обкатываются одна по другой безпроскальзывания.

7. Делительные окружности (делительные цилиндры их диаметры обозначаются d1, d2) окружности зубчатых колес, при измерении по которым теоретические толщина зуба и ширина впадины равны между собой (окружности по которым обкатывается инструмент при нарезании зубьев). У некоррегированныхзубчатых колес делительная и начальная окружности совпадают.

8. Окружность выступов (цилиндры выступов; их диаметры обозначаются da1, da2) окружность, очерченная по вершинам зубьев.

9. Окружность впадин (цилиндры впадин; их диаметры обозначаются df1, df2)- окружность, очерченная по дну впадин между зубьями.

10. Шаг нарезки зубьев (р) расстояние между одноименными точками боковой (рабочей) поверхности зубьев, измеренное по дуге окружности с центром на оси вращения колеса. В зависимости от окружности по которой измеряется шаг нарезки различают основной (рb) начальный (pw) и делительный (р1) шаги (см. формулу 4.4).

11. Модуль (т) часть диаметра делительной окружности, приходящаяся на 1 зуб колеса (см. формулу 4.3).

12. Высота головки зуба (hа) расстояние между делительной окружностью и окружностью выступов, измеренное по радиусу (обычно hа= т).

13. Высота ножки зуба (hf) расстояние между делительной окружностью и окружностью впадин, измеренное по радиусу (обычно hf = 1,25×тдля цилиндрических колес и hf = 1,20×т для конических колес).

14. Высота зуба (h) расстояние между окружностью впадин и окружностью выступов, измеренное по радиусу. Высота зуба складывается из высот его ножки и головки (h = ha + hf, следовательно, для цилиндрических колес h = 2,25×т, а для коническихh = 2,20×т).

15. Ширина зубчатого венца (b) расстояние между торцовыми поверхностями зубчатого венца колеса.

16. Боковой зазор в зацеплении (j) полуразность между толщиной зуба и шириной впадины, измеренными по дуге делительной окружности (обычно j =0,0125m для литых колес и j = (0…0,0065)m для механически обработанных колес).

17. Угол наклона зубьев (b) угол между продольной осью зуба и образующей поверхности зубчатого венца колеса (для прямозубых колес b =0 и, как правило, не указывается).

18. Радиальный зазор (с) разница между высотой ножки и головки зуба (обычно с = 0,25×т для цилиндрических колес и с =0,20×т для конических колес).

19. Длина активной линии зацепления (ga)- часть линии зацепления, отсекаемая окружностями выступов сопрягаемых колес (на рис. 4.2 не показана).

20. Коэффициент торцового перекрытия (ea = gaь) отношение длины активной линии зацепления к основному шагу колеса. Коэффициент торцового перекрытия показывает сколько зубьев в среднем за поворот колеса на 1 шаг находятся в зацеплении.

Основные параметры эвольвентных конических зубчатых передач. Конические зубчатые эвольвентные передачи предназначены для передачи вращательного движения между валами, геометрические оси которых пересекаются. Наиболее часто угол между осями валов составляет 90°, передачи с таким углом принято называть ортогональными (рис. 4.3).

Рис. 4.3. Схема зацепления ортогональной конической передачи: 1, 2, 3 – образующие внутреннего, среднего и внешнего дополнительных конусов; 4 — эквивалентное цилиндрическое колесо.

Зубья колес в конической передаче имеют переменные размеры сечения по длине, что обусловливает большую трудность изготовления (отсюда ниже точность) и меньшую несущую способность передачи (в среднем примерно на 15%). Конусная образующая поверхность зубчатого венца вызывает появление значительных осевых сил на валах передачи, что является причиной усложнения конструкции опор и всей передачи в целом.

Конусы, аналогичные начальному и делительному цилиндрам цилиндрического колеса, называют начальным и делительным конусами.

Угол между осью начального конуса и его образующей называют углом начального конуса (обозначают d1 – угол начального конуса ведущего колеса; d2 – угол начального конуса ведомого колеса). В некоррегированныхпередачах начальные и делительные конусы совпадают.

Дополнительные конусы конусы, образующая которых перпендикулярна образующей начального конуса.Обычно у зубчатого колеса имеется 2 дополнительных конуса – внешний, наиболее удаленный от точки пересечения осей колес и внутренний, расположенный ближе к этой точке.

Ширина зубчатого венца конического колеса (b) часть образующей делительного конуса колеса между дополнительными конусами.

Сечение зубьев поверхностью дополнительного конуса называют торцевым сечением. Различают внешнее, среднее и внутреннее торцевые сечения. Для передач с прямыми и косыми зубьями стандартизуются и указываются в конструкторской документации обычно параметры, относящиеся к внешнему торцевому сечению, а в расчетах используются параметры, относящиеся к среднему (медиальному) торцевому сечению. Для передач с круговым зубом расчетные и конструктивные ( в том числе стандартизованные) параметры относятся к среднему (медиальному) торцевому сечению.

Расстояние от вершины делительного конуса до пересечения его образующей с образующей внешнего дополнительного конуса называют внешним конусным расстоянием (Rе), а расстояние от вершины делительного конуса до пересечения его образующей с образующей среднего (медиального) дополнительного конуса называют медиальным конусным расстоянием (R). Для сопряженных (находящихся в зацеплении) зубчатых колес Rе1= Rе2 и R1= R2.

Эквивалентное цилиндрическое колесо получается при развертке внешнего дополнительного конуса на плоскость с дополнением полученной развертки до полной окружности. Делительный диаметр эквивалентного колеса с прямолинейными зубьями можно представить в следующем виде

, (4.7)

откуда следует, что

. (4.8)

Для передачи с круговыми зубьями эквивалентное число зубьев выразится зависимостью

, (4.9)

где bm – угол наклона кругового зуба в медианальном сечении.

Передачи с зацеплениями других типов.

Циклоидальные и цевочные зацепления были известны примерно на 100 лет раньше эвольвентных.

Циклоидальное зацепление – это зацепление, в котором боковые рабочие поверхности зубьев сопряженных колес очерчены по циклоиде.

Циклоида — кривая, описываемая точкой окружности, катящейся без скольжения по другой окружности. При обкатывании производящей окружности по главной окружности с внешней стороны получаем эпициклоиду, а при обкатывании с внутренней стороны – гипоциклоиду. При этом производящая окружность обкатывается по делительной окружности зубчатого колеса, совпадающей в зацеплении с начальной окружностью.

Для циклоидального зацепления выполняется основная теорема зацепления – нормаль в точке взаимодействия профилей сопряженных зубьев проходит через полюс зацепления.

В циклоидальном зацеплении рабочий профиль головки зуба очерчен по эпициклоиде, а профиль ножки зуба по гипоциклоиде. Оба профиля образованы обкаткой производящих окружностей по начальным окружностям шестерни и колеса. Обычно принимают диаметр производящей окружности dпр = (0,35…0,4)d. В следствие этого циклоидальное зацепление по сравнению с эвольвентным более чувствительно к неточностям межосевого расстояния.

В настоящее время зубчатые колеса циклоидального зацепления нарезают, как правило, по методу обкатки способом фрезерования червячной фрезой. При этом боковой профиль зуба червячной фрезы также состоит из двух ветвей – эпо- и гипоциклоиды.

Достоинства циклоидального зацепления: 1) Пониженные по сравнению с эвольвентным зацеплением контактные напряжения на рабочих поверхностях зубьев, вследствие увеличения приведенного радиуса кривизны контактных поверхностей. 2) Уменьшенный коэффициент скольжения зубьев при одном и том же коэффициенте перекрытия e. 3) Повышенная плавность работы передачи вследствие увеличения коэффициента перекрытия зубьев. Преимущество циклоидального зацепления особенно заметно проявляется при их использовании в ускоряющих (мультиплицирующих) передачах. Применение циклоидального зацепления в таких передачах способствует более благоприятному расположению нагрузки, действующей на зубья (значительно меньше угол зацепления), следовательно выше их КПД.

Недостатки циклоидального зацепления: 1) Сложность инструментального профиля (две циклоиды по сравнению с прямой у эвольвентного зацепления). 2) Высокая чувствительность к ошибкам в исполнении межосевого расстояния (нарушается постоянство передаточного числа). 3) Трудности ремонта передачи – при изготовлении заменяющего колеса необходимо точно знать размеры производящей окружности.

В машиностроении циклоидальное зацепление находит применение в винтовых насосах и компрессорах, в счетчиках оборотов и некоторых других устройствах.

Рис. 4.4. Схема построения цевочного зацепления.

Частным случаем циклоидального зацепления является цевочное зацепление. В цевочном зацеплении радиус производящей окружности одного из колес выбирается равным радиусу начальной (полоидной) окружности (рис. 4.4). В этом случае гипоциклоидальный профиль зубьев ответного колеса обращается в точку, что позволяет зубья первого колеса выполнить в форме цилиндрических пальцев, называемых цевками, укрепленных между двумя дисками; второе колесо при этом выполняется как зубчатое. Преимуществом цевочного зацепления является возможность отказаться от фрезерования зубцов одного из колес – цевочного колеса. Кроме того, цевки можно сделать вращающимися, заменив трение скольжения между зубьями колес трением качения, что увеличивает КПД передачи.

Цевочное зацепление может быть как внешним, так и внутренним.

Цевочное зацепление применяется в зубчатых механизмах больших габаритов: в подъемно-транспортных механизмах, в механизмах поворота орудийных башен, в некоторых типах планетарных редукторов. Во всех этих механизмах цевочным выполняют большее колесо, что позволяет отказаться от крупногабаритных зубофрезерных станков.

Кроме того, в военной технике цевочное зацепление широко применяется в гусеничных движителях МГКМ для зацепления ведущего колеса с гусеницей, обеспечивая равномерность движения гусеницы при равномерном вращении ведущего колеса и безударное взаимодействие цевок гусеничной цепи с его впадинами.

Pereosnastka.ru

Зубчатые передачи
Зубчатые передачи

Зубчатые передачи имеются почти во всех сборочных единицах промышленного оборудования. С их помощью изменяют по величине и направлению скорости движущихся частей станков, передают от одного вала к другому усилия и крутящие моменты.

В зубчатой передаче движение передается с помощью пары зубчатых колес. В практике меньшее зубчатое колесо принято называть шестерней, а большее — колесом. Термин «зубчатое колесо» относится как к шестерне, так и к колесу.

Зубчатое колесо, сидящее на ведущем валу, называют ведущим, а сидящее на ведомом валу — ведомым. Число зубьев зубчатого колеса обозначается буквой z.

В зависимости от взаимного расположения геометрических осей валов зубчатые передачи бывают: цилиндрические, конические и винтовые. Зубчатые колеса для промышленного оборудования изготовляют с прямыми, косыми и угловыми (шевронными) зубьями.

По профилю зубьев зубчатые передачи различают: эволь-вентные и циклоидальные. Помимо зубчатых передач с эволь-вентным зацеплением в редукторах применяют передачу Новикова с круговым профилем зубьев. Передача Новикова позволяет применять колеса с малым числом зубьев, а значит, имеет большое передаточное число и может передавать значительные мощности. Циклоидальное зацепление используется в приборах и часах.

Цилиндрические зубчатые колеса с прямым зубом служат в передачах с параллельно расположенными осями валов и монтируются на последних неподвижно или подвижно.

Зубчатые колеса с косым зубом применяют для передачи движения между валами, оси которых пересекаются в пространстве, а в ряде случаев и между параллельными валами, например, когда в передаче должны сочетаться повышенная окружная скорость колес и бесшумность их работы при больших передаточных отношениях до 15:1.

Косозубые колеса монтируют на валах только неподвижно.

Работа косозубых колес сопровождается осевым давлением. Осевое давление можно устранить, соединив два косозубых колеса с одинаковыми, но направленными в разные стороны зубьями. Так получают шевронное колесо (рис. 1, в), которое монтируют, обращая вершину угла зубьев в сторону вращения колеса. На специальных станках шевронные колеса изготовляют целыми из одной заготовки.

Конические зубчатые передачи различают по форме зубьев: прямозубые, косозубые и круговые.

На рис. 1, г показаны конические прямозубые, а на рис. 1, ж – круговые зубчатые колеса. Их назначение – передача вращения между валами, оси которых пересекаются. Для пересекающихся осей применяют также червячные передачи (рис. 1, е). Конические зубчатые колеса с круговым зубом применяются в передачах, где требуется особая плавность и бесшумность движения.

На рис. 1, д изображены зубчатое колесо и рейка. В этой передаче вращательное движение колеса преобразуется в прямолинейное движение рейки.

Элементы зубчатого колеса. В каждом зубчатом колесе (рис. 2) различают три окружности (делительную, окружность выступов, окружность впадин) и, следовательно, три соответствующих им диаметра.

Делительная, или начальная, окружность делит 3Уб по высоте на две неравные части: верхнюю, называемую головкой зуба, и нижнюю, называемую ножкой зуба. Высоту головки зуба принято обозначать ha, высоту ножки — hf, а диаметр окружности — d.

Окружность выступов – это окружность, ограничивающая сверху профили зубьев колеса. Обозначают ее da.

Окружность впадин проходит по основанию впадин зубьев. Диаметр этой окружности обозначают df.

Расстояние между серединами двух соседних зубьев, измеренное по дуге делительной окружности, называется шагом зубчатогозацепления. Шаг обозначают буквой Р. Если шаг, выраженный в миллиметрах, разделить на число л = 3,14, то получим величину, называемую модулем. Модуль выражают в миллиметрах и обозначают буквой т.

Дуга делительной окружности в пределах зуба называется толщиной зуба, дуга S1 — шириной впадины. Как правило, S = = Sx. Размер b зуба по линии, параллельной оси колес, называется длиной зуба.

Радиальный зазор — кратчайшее расстояние между вершиной зуба и основанием впадины сопряженного колеса.

Боковой зазор — кратчайшее расстояние между нерабочими профильными поверхностями смежных зубьев, когда их рабочие поверхности находятся в контакте.

С модулем связаны все элементы зубчатого колеса: высота головки зуба ha = т, высота ножки зуба hf= 1,2т, высота всего зуба h = 2,2 т.

Зная число зубьев z, с помощью модуля можно определить диаметр делительной окружности зубчатого колеса d = zm.

Формулы, с помощью которых можно определить параметры цилиндрических зубчатых колес в зависимости от модуля и числа зубьев, приведены в табл. 5.

Тихоходные зубчатые колеса изготовляют из чугуна или углеродистой стали, быстроходные — из легированной стали. После нарезания зубьев на зуборезных станках зубчатые колеса подвергают термической обработке, чтобы увеличить их прочность и повысить стойкость против износа. У колес из углеро-

диетой CTa.‘irf поверхность зубьев улучшают химико-термическим способом — цементацией и потом закалкой. Зубья быстроходных колес после термической обработки шлифуют или притирают, Применяется также поверхностная закалка токами высокой частоты.

Чтобы зацепление было плавным и бесшумным, одно из двух колес в зубчатых парах в отдельных случаях, когда это позволяет нагрузка, выполняют из текстолита, древеснослои-стого пластика ДСП -Г или капрона. Для облегчения зацепления зубчатых колес при включении посредством перемещения по валу торцы зубьев со стороны включения закругляют.

Зубчатые передачи бывают открытые и закрытые. Открытые передачи, как правило, тихоходные. Они не имеют корпуса для масляной ванны и периодически смазываются густой смазкой. Закрытые передачи заключены в корпуса. Зубчатые колеса закрытых передач смазываются или в масляной ванне, или струйной смазкой под давлением.

По быстроходности зубчатые передачи разделяются на следующие виды (м/с): весьма тихоходные — v < 0,5, тихоходные — 0,5 < v < 3, среднескоростные — 3 < v < 15, скоростные — 15 < v < 40, высокоскоростные — v > 40.

Точность изготовления колес и сборка передач должны соответствовать государственному стандарту. Для цилиндрических, конических и червячных зубчатых передач установлено 12 степеней точности, обозначаемых в порядке убывания точности степенями 1 —12.

Наиболее точные 1-я и 2-я степени являются резервными, так как современные возможности производства и контроля не могут обеспечить изготовление точных колес. 12-я степень также резервная, так как согласно действующим ГОСТ ам зубчатые колеса пока не выполняются грубее 12-й степени точности.

Большое применение имеют зубчатые передачи 6, 7, 8 и 9-й степеней точности. Краткие характеристики наиболее распространенных зубчатых и червячных передач (6-й — 9-й степеней точности) приведены в табл. 6. Каждая степень точности зубчатой передачи соответствует нормали кинематической точности, установленной ГОСТ ом, а также плавности работы колеса и контакта зубьев.

Посадка зубчатых колес на валы ничем не отличается от посадки шкивов, поэтому ниже описана только проверка, регулирование зубчатых и червячных передач.

Основными техническими требованиями к зубчатым сборочным единицам являются следующие:
1. Зубья колес при проверке на краску должны иметь зону касания не менее 0,3 длины зуба, а по профилю — от 0,6 до 0,7 высоты зуба.
2. Радиальное торцовое биение колес не должно выходить за пределы, установленные техническими требованиями.
3. Оси валов сцепляющихся колес и оси гнезд корпусов должны лежать в одной плоскости и быть между собой параллельными. Допускаемые отклонения указаны в технических условиях.
4. Между зубьями сцепляющихся колес необходим зазор, величина которого зависит от степени точности передачи и определяется по таблице.
5. Собранная сборочная единица испытывается на холостом ходу или под нагрузкой. Она должна обеспечивать соответствующую прочность для передачи мощности, плавность хода и умеренный нагрев подшипниковых опор (не свыше 323 К, или 50 °С).
6. Передача должна работать плавно и почти бесшумно.

Ниже описан порядок сборки некоторых сборочных единиц составных зубчатых колес.

Зубчатый венец устанавливают на центрирующий бурт А ступицы и предварительно закрепляют тремя-четырьмя временными болтами, имеющими меньший диаметр. Сборочную единицу проверяют на оправке на радиальное биение и венец закрепляют временными болтами. Оставшиеся отверстия под болты в ступице и венце с помощью кондуктора совместно развертывают и зенкуют, а затем в эти отверстия вставляют нормальные болты, а временные болты снимают и освободившиеся отверстия обрабатывают так же, как и первые. После установки нормальных болтов во все отверстия зубчатое колесо окончательно проверяют на биение. В тяжелонагруженных передачах затягивать болты целесообразно динамометрическим ключом, чтобы на плоскостях фланцев создать силу трения, момент которой превосходил бы крутящий момент, передаваемый зубчатым колесом.

Зубчатый венец напрессовывают на диск ступицы с натя-том. Чтобы облегчить операцию и избежать возможных перекосов, венец предварительно нагревают в масляной ванне или специальном индукторе т. в. ч. до 393-423 К (120-150 °С). Затем сверлят отверстия под стопоры. Вместо стопоров нередко крепление осуществляют заклепками. В этом случае отверстия сверлят насквозь, устанавливают в них заклепки и расклепывают на прессах.

При установке зубчатых сборочных единиц на валах наиболее часто встречаются следующие погрешности: качание зубчатого колеса на шейке вала, радиальное биение по окружности выступов, торцовое биение и неплотное прилегание к упорному буртику вала.

На качание сборочную единицу проверяют обстукиванием напрессованного зубчатого колеса молотком из мягкого металла.

Проверку на радиальное и торцовое биение сборочной единицы — зубчатое колесо с валом производят на призмах или в центрах.

Для этого вал укладывают на призмы, регулируют положение седла призмы винтами и устанавливают вал параллельно поверочной плите по индикатору. Во впадину колеса укладывают цилиндрический калибр, диаметр которого должен составлять 1,68 модуля зацепления колеса. Стойку с индикатором устанавливают так, чтобы ножка его вошла в соприкосновение с калибром и с натягом на один-два оборота стрелки. При этом замечают показание индикатора, затем, перекладывая калибр через 2-3 зуба и поворачивая колесо, подводят калибр к ножке индикатора. Отмечают показание стрелки и определяют величину диаметрального биения. Допустимое биение торца и диаметра венца зубчатого колеса зависит от степени точности колеса по ГОСТ у. Торцовое биение проверяют индикатором.

Правильное зацепление зубьев происходит при параллельности осей колес, отсутствии их скрещивания и сохранении расстояния между осями валов, равного расчетной величине. Параллельность расположения осей подшипников корпуса зубчатой передачи (рис. 4) проверяют штихмассом, штангенциркулем и индикатором. Расстояние между осями подшипников проверяют контрольными оправками, устанавливаемыми в корпус. Расстояние измеряет или между оправками, или по их наружной поверхности.

Определив размеры или на обеих сторонах, устанавливают непараллельность осей отверстий подшипников. Чтобы добиться требуемого межосевого расстояния и параллельности, смещают корпуса подшипников. Непараллельность в вертикальной плоскости может быть определена при наложении уровня на каждый из валов. Величина непараллельности в этом случае будет равна разности показаний уровня в угловых делениях. Обычно цена деления уровней дается в долях миллиметра на 1 мм и для перевода показаний уровня в угловые секунды цену деления нужно умножить на число 200.

Например, цена деления уровня 0,1 мм на 1 м соответствует 20 угловым секундам (0,1-200/1 =20”).

От степени точности колес и передач устанавливают нормы бокового зазора. Основными являются нормы нормального гарантированного зазора (обозначаемого буквой X), компенсирующего уменьшение бокового зазора от нагрева передачи.

На рис. 5, а показана проверка бокового зазора, которую в цилиндрических зубчатых колесах выполняют щупом или индикатором. На валу одного из зубчатых колес крепят поводок, конец которого упирают в ножку индикатора, установленного на корпусе сборочной единицы. Другое зубчатое колесо удерживают от проворачивания фиксатором. Затем поводок вместе с валом и колесом слегка поворачивают то в одну, то в другую сторону, а это можно сделать только на величину зазора в зубьях. По показанию индикатора определяют боковой зазор. Наименьший боковой зазор С„ указывают в технических условиях на сборку сборочной единицы. При межосевом расстоянии 320 — 500 мм для передач средней точности зазор этот должен быть не менее 0,26 мм. Наиболее точно боковые зазоры измеряют с помощью индикаторных приспособлений так называемым выносным методом. Приспособления позволяют производить замеры зазора в глухих передачах.

На рис. 5,б показано одно из таких приспособлений. Оно состоит из крестовины, закрепленной на валу редуктора рукоятками, и стойки с индикатором. Стойку с индикатором ввертывают в хомут, закрепляют винтом к крышке редуктора. При покачивании вала рукой до соприкосновения плоскости крестовины с ножкой индикатора, закрепленного на неподвижной крышке редуктора, определяют боковой зазор между зубьями. Малое колесо передачи должно быть неподвижным.

Замеренный зазор следует отнести к диаметру начальной окружности зубчатого колеса, на валу которого закреплена крестовина.

Таким же образом проверяют боковой зазор и для других пяти положений крестовины, при повороте ее вместе с валом на угол 60°. По результатам замеров определяют колебание величины боковых зазоров и судят о качестве собранной передачи. В зависимости от модуля и точности зубчатой передачи допустимая разность боковых зазоров составляет 0,08—0,15 мм.

Неправильное пятно касания и неправильное место расположения на зубьях являются следствием погрешностей, возникших при обработке и сборке колес, валов, корпусов редукторов, подшипников. На рис. 6,б отпечаток краски расположен односторонне. Причиной неправильного пятна контакта может быть перекос колеса на зуборезном станке или перекос отверстий в корпусе редуктора.

Если зуб колеса утоплен со стороны торца и при поворачивании на 180° положение не меняется, то, следовательно, перекошена ось отверстия в корпусе. Эту погрешность устраняют запрессовкой новой втулки и растачиванием ее или перепрессовкой пальца зубчатого колеса, если оно посажено на палец.

На рис. 6, в показан слишком большой зазор по всему венцу. Возможные причины: межосевое расстояние в корпусе недостаточное или слишком большое. Устраняют погрешность

перепрессовкой втулок в корпусе и их повторным растачиванием.

Недостаточный зазор по всему венцу показан на рис. 6, г. Возможные причины малой величины зазора: излишняя или недостаточная толщина зуба у одного или у обоих колес. В этом случае заменяют колеса или используют корпус с другим межосевым расстоянием.

Зубчатые передачи и их классификация

В технике зубчатыми передачами называются такие механизмы, которые осуществляют передачу вращательного движения с одного вала на другой и при этом изменяют частоты вращения с помощью зубчатых колес и реек.

Зубчатые колёса имеют свои функциональные названия, в зависимости от величины и положения установки. Ведущими называются те зубчатые колеса, которые располагаются на валах, передающих вращение, а ведомыми – на валах, принимающих вращение. Те колеса сопряженной пары, которые имеют меньший диаметр, называются шестернями. Что касается термина «зубчатое колесо», то им обозначаются обе детали, составляющие такую передачу.

Все элементы зубчатого зацепления при конструировании и изготовлении подвергаются расчётам согласно стандартному модулю.

Область применения зубчатых передач

Механизм зубчатой передачи

В современном машиностроении самым распространенным видом передач являются именно зубчатые. Они обеспечивают постоянное передаточное число, отличаются надежностью, компактными размерами и высоким коэффициентом полезного действия. Кроме того, с помощью зубчатых передач можно транслировать довольно значительные нагрузки, они считаются так же долговечными и простыми в эксплуатации.

У зубчатых передач есть и некоторые недостатки. К примеру, они не могут изменять передаточное число бесступенчатым образом, издают немало шума при больших скоростях вращения, а при их изготовлении и монтаже требуется соблюдать высокую точность.

Зубчатые передачи эксплуатируются в самых разнообразных условиях, и поэтому как их конструкции, так и формы элементов зубчатых зацеплений весьма различны.

Классификация зубчатых передач

Зубчатые передачи принято классифицировать по целому ряду критериев. На основе такого из них, как взаимное расположение осей колес, они подразделяются на:

• Цилиндрические передачи (с параллельными осями);

• Конические передачи (с пересекающимися осями);

• Червячные передачи и колёса с криволинейными зубьями (со скрещивающимися осями).

В зависимости от того, как расположены зубья, а также колеса друг относительно друга, зубчатые передачи подразделяются на те, что имеют внешнее и внутреннее зацепление. При внешнем зацеплении колеса вращаются в противоположных направлениях, а при внутреннем – в одном и том же.

По такому критерию, как форма профиля, различают эвольвентные и неэвольвентные зубья. Первые распространены гораздо более широко, чем вторые.

По тому, как расположена теоретическая линия зуба, различают колеса с зубьями косыми, прямыми, винтовыми и шевронными. Все непрямозубые передачи издают меньше шума, обладают меньшим износом и высокой плавностью в работе. Именно поэтому их чаще всего используют в тех механизмах, которые требуют передачи значительной мощности, а также высоких окружных скоростей.

Еще одним критерием классификации зубчатых передач является их конструктивное исполнение. Согласно которому различают закрытые и открытые зубчатые передачи. Первые размещаются в специальных корпусах, и с помощью расположенных в них масляных ванн обеспечиваются постоянной смазкой. Открытые зубчатые передачи или периодически смазываются специальными консистентными смазками, или же не смазываются вообще.

Что касается такого важного критерия классификации, как величина окружной скорости, то зубчатые передачи подразделяются на тихоходные ( до /с ), среднескоростные ( 315 м/с ), быстроходные ( более 15 м/с ).

Материалы деталей зубчатых колес

Основным критерием при выборе того или иного материала для изготовления зубчатых колес и червячных передач является обеспечение необходимой стойкости против крошения и заедания рабочих поверхностей их зубьев.

Чаще всего для изготовления зубчатых колес применяются стали, обрабатываемые термически. Что касается чугунов и пластмасс то они используются редко. Зубчатые колеса, работающие в условиях средних нагрузок, обычно изготавливаются из легированных сталей 40Х, 45ХН, а также углеродистых сталей Ст 50Г, Ст 40 и Ст 35 с термической обработкой. Для малонагруженных и тихоходных передач используются чугунные зубчатые колеса, а те, что используются в самых ответственных передачах, изготавливают из стали 40ХНМА.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *