Что может произойти с вашей электроникой, если ее на нее не подавать питание длительное время
Вы никогда не сталкивались с такой ситуацией, что при подаче питания на электроприбор, то есть при его включении, после длительного перерыва в работе, например, более года, он внезапно выходит из строя? Хотя до последнего выключения он работал исправно. А это имеет место быть. И чем больше был перерыв в работе электроприбора, тем больше вероятность его выхода из строя при включении. Нет, я не утверждаю, что при включении электроприбора в данной ситуации он обязательно выйдет из строя. Но! Вероятность этого события при этом увеличится.
реклама
Давайте разберемся, почему это происходит. Почти все электроприборы, от компьютера, до стиральной машины содержат в своем составе электролитические конденсаторы. И в этой статье речь пойдет о них, как об основных виновниках выхода из строя электроприборов. Чтобы понять физические процессы происходящие при этом в электролитических конденсаторах, рассмотрим их устройство.
Электролитический конденсатор состоит из герметичной колбы, в которую запрессованы две обкладки свернутые в спираль. Положительная и отрицательная. Положительная обкладка выполнена из алюминиевой фольги, покрытой тонкой пленкой оксида алюминия, которая исполняет роль диэлектрика в конденсаторе между обкладками.
реклама
Отрицательной обкладкой является жидкий электролит, которым пропитана бумажная лента и которая имеет гальванический контакт с неоксидированной (непокрытой пленкой оксида алюминия) алюминиевой фольгой, обеспечивающей надежный контакт между отрицательным выводом конденсатора и электролитом, благодаря их большой площади соприкосновения.
При длительном перерыве в работе, то есть при отсутствии на конденсаторе напряжения в течении этого времени, происходит постепенное разрушение диэлектрика (оксида алюминия) при его взаимодействии с электролитом в отсутствии напряжения на обкладках конденсатора. Это приводит к утончению диэлектрического слоя, к увеличению тока утечки и как следствие, увеличению вероятности пробоя конденсатора при подаче на него номинального напряжения. Этот эффект начинает проявляться при перерыве в работе конденсатора длительностью более года.
Специалисты в таких случаях рекомендуют проводить тренировку (формовку) конденсаторов, суть которой заключается в подаче на конденсатор в течении длительного времени постепенно увеличивающегося напряжения, с контролем тока утечки. При этом, подача в начале тренировки малого значения напряжения, не приведет к пробою конденсатора, и начнется процесс восстановления диэлектрического слоя (оксида алюминия) благодаря процессу электролиза. И по мере восстановления диэлектрического слоя, напряжение на конденсаторе увеличивается до номинального. Скорость увеличения напряжения определяется по значению тока утечки.
реклама
Рекомендации одного из производителей электролитических конденсаторов по проведению тренировки (риформинга).
Еще выдержка из технической документации производителя конденсаторов EPCOS.
реклама
Проведем практическую проверку этого эффекта. В качестве подопытного возьму недавно купленный на радиорынке электролитический конденсатор на 3300 мкФ., с номинальным напряжением 25 В., дата изготовления сентябрь 2016 года.
Предполагаю, что с даты изготовления, и до сегодняшнего дня на него никто не подавал напряжение. И потому для эксперимента он подходит, как нельзя лучше. Подам на него с лабораторного источника питания 25 В., и после его заряда в разрыв включу амперметр (прибор Ц-43101) для измерения тока утечки.
Ссылка на видео: https://disk.yandex.ru/i/B1R4rwUrHpjyyQ
Отсюда видно, что ток утечки составил 35 мкА. (вся шкала прибора 250 мкА). Оставляю его под напряжением на 1 час, и повторю измерение.
Ссылка на видео: https://disk.yandex.ru/i/k8fSGwiW3YpzgQ
В этом случае, как мы видим, ток утечки составил 7 мкА. Итого ток утечки уменьшился в 5 раз. Отсюда вывод, вышеизложенное явление подтверждено на практике.
Но не будете, же вы выпаивать из своих компьютеров и телевизоров конденсаторы для их тренировки, после их длительного перерыва в работе. Поэтому включайте свою электронику (подавайте на нее питание) хотя бы раз в год. А иначе после включения, особенно если в вашей электронике применены дешевые конденсаторы из них может выйти белый дым.
Во время моей учебы, мой преподаватель по предмету «радиокомпоненты» как то спросил у нас: так на чем работает вся электроника? Многие начали отвечать, что работает на упорядоченном движении заряженных частиц, и так далее. На что преподаватель в шутку сказал, что вся электроника работает на белом дыме. Пока белый дым находится в электронике, она работает. Как только белый дым выходит из электроники, она перестает работать. Так и в данном случае с нашими электролитическими конденсаторами, подобное может произойти.
Кроме того, электролитические конденсаторы подвержены высыханию. И это их основная проблема, каждый второй ремонт электроники по моему опыту заканчивается заменой именно этой детали. Высыхание происходит из-за плохой герметизации корпуса. Вследствие чего электролит постепенно испаряется, а поскольку он является одной из обкладок конденсатора, то и получается, что испаряется одна обкладка конденсатора. И емкость уменьшается до нуля. Опять же это зависит от качества конденсаторов. С качественными конденсаторами вероятность подобного значительно меньше. Но, к сожалению, при покупке электроники возможности изучить применяемую в ней элементную базу, какие там стоят конденсаторы не всегда возможно.
Подобных недостатков лишены полимерные конденсаторы.
Поэтому, выбирая комплектующие компьютерной техники, старайтесь выбирать комплектующие, выполненные на полимерных конденсаторах. Тем более, что во многих комплектующих визуально открыт доступ к используемой элементной базе. И легко, например, увидеть на материнской плате, какие конденсаторы применяются.
Что такое конденсатор и для чего он нужен в схемах
Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.
Общая концепция
Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.
Обозначается на схеме двумя параллельными линиями.
Принцип работы
Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.
Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.
Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.
Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.
Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.
Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.
А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.
Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.
Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.
Конденсатор и цепь постоянного тока
Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.
Лампочка затухает при полной зарядке.
Постоянный электрический ток не проходит через конденсатор только после его зарядки.
Цепь с переменным током
А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.
Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.
Поэтому, конденсатор пропускает переменный электрический ток.
Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.
Назначение и функции конденсаторов
Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:
- Фильтрует высокочастотные помехи;
- Уменьшает и сглаживает пульсации;
- Разделяет сигнал на постоянные и переменные составляющие;
- Накапливает энергию;
- Может использоваться как источник опорного напряжения;
- Создает резонанс с катушкой индуктивности для усиления сигнала.
Примеры использования
В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.
В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.
С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.
Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.
А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.
Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.
Фазовые искажения
Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.
Включение и отключение цепей постоянного тока с конденсатором и индуктивностью
Конденсатор представляет собой устройство, способное накапливать электрические заряды.
Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд.
Емкость С конденсатора определяется как отношение заряда Q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению) U: С = Q/U.
Емкость конденсатора выражается в фарадах. Емкостью 1 фарад обладает конденсатор, у которого при сообщении заряда 1 кулон разность потенциалов возрастает на 1 вольт: 1 фарад — очень большая емкость, на практике используют более мелкие единицы (микрофарад (1 мкФ = 10 -6 Ф) и пикофарад (1 пФ = 10 -12 мкФ)).
Заряд и разряд конденсатора
Заряд конденсатора. Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора сопротивлением R, к источнику питания с постоянным напряжением U(рис. 19).
Так как в момент включения конденсатор еще не заряжен, то напряжение на нем ис = 0. Поэтому в цепи в начальный момент времени (/ = 0) падение напряжения на сопротивлении R равно U и возникает ток, сила которого в начальный момент z0 = U/R.
Прохождение тока і сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение ис = Q/C, и падение напряжения на сопротивлении Rуменьшается: iR=U— ис. Следовательно, сила тока i = (U- uc)/Rуменьшается. Снижается и скорость накопления заряда Q, так как ток в цепи і = dQJdt.
С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем ис растут все медленнее (рис. 20), а сила тока в цепи постепенно уменьшается пропорционально разности напряжений (U— ис).
Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится нулевым — процесс зарядки конденсатора заканчивается.
Принято считать, что процесс зарядки закончился, когда ток уменьшился до 1 % — начального значения U/R, или, что то же, когда напряжение на конденсаторе достигло 99 % напряжения источника питания U.
Рис. 20. Заряд конденсатора
Процесс зарядки конденсатора тем продолжительней, чем выше сопротивление цепи R, ограничивающее силу тока, и емкость конденсатора С, так как при высокой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуется постоянной времени цепи (т = RC): чем выше т, тем медленнее процесс.
Постоянная времени цепи имеет размерность времени, так как [т] = [7?С] = Ом • Кл/В = Ом • А • с/В = с.
Через интервал времени с момента включения цепи, равный т, напряжение на конденсаторе достигает примерно 63 % напряжения источника питания, а через интервал 5т процесс зарядки конденсатора можно считать закончившимся (рис. 21).
При зарядке напряжение на конденсаторе ис= U — Ue
t/x ), то есть равно разности постоянного напряжения источника питания и свободного напряжения Ue
^ x , убывающего с течением времени по закону показательной функции от значения U до нуля.
Зарядный ток конденсатора
Рис. 21. Напряжение конденсатора при заряде
Ток ic от начального значения U/R постепенно уменьшается по закону показательной функции.
Разряд конденсатора. Рассмотрим процесс разряда конденсатора С, который был заряжен от источника питания до напряжения Uчерез резистор с сопротивлением R, где переключатель переводится из положения 1 в положение 2 (рис. 22).
Рис. 22. Разряд конденсатора
В начальный момент в цепи возникнет ток і = U/R и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения Uc будет уменьшаться и ток в цепи: і = Uc/R. Через интервал времени 5т = 5RC напряжение на конденсаторе и ток цепи снизятся примерно до 1 % начальных значений и процесс разряда конденсатора можно считать закончившимся (рис. 23).
При разряде напряжение на конденсаторе ис = Ue
^ x , то есть уменьшается по закону показательной функции.
Разрядный ток конденсатора так же как и напряжение, уменьшается по экспоненциальному закону.
Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.
Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают проводимостью.
Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. При саморазряде конденсатора постоянная времени не зависит от формы обкладок и расстояния между ними.
Процессы зарядки и разрядки конденсатора называются переходными процессами.